

 IGNITE™ Intellectual Property
 Reference Manual

 Revision 1.0

 PTSC
 10989 Via Frontera
 San Diego, CA 92127
 1 (858) 674 5000 voice
 1 (858) 674 5005 fax
 www.ptsc.com

 IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

ii

Copyright © 1995 George William Shaw, All Rights Reserved.
Copyright © 1995–1999 Patriot Scientific Corporation
Printed in the United States of America

Printing Date: 2002 March 18

For company and product information, access www.ptsc.com. Patriot Scientific Corporation is publicly traded over the
counter, symbol PTSC.

ShBoom and IGNITE are trademarks of Patriot Scientific Corporation. Any other brands and products used within this
document are trademarks or registered trademarks of their respective owners.

The technology discussed in this document may be covered by one or more of the following US patents:
5,440,749; 5,530,890; 5,604,915; 5,659,703; 5,784,584; 5,809,336. Other US and Foreign patents pending.

IMPORTANT NOTICE

Disclaimer
Patriot Scientific Corporation (PTSC) reserves the right to make changes to its products or specifications at any time, or
to discontinue any product, without notice. PTSC advises its customers to obtain the latest product information available
before designing-in or purchasing its products. PTSC assumes no responsibility for the use of any circuitry described
other than the circuitry embodied in a PTSC product. PTSC makes no representations that the circuitry described herein
is free from patent infringement or other rights of third parties, which may result from its use. No license is granted by
implication or otherwise under any patent, patent rights or other rights, of PTSC. PTSC assumes no liability for any
product designs, customer designs, design assistance, or use of its products.

Information within this document is subject to change without notice, but was believed to be accurate at the time of
publication. No warranty of any kind, including but not limited to implied warranties of merchantability or fitness for a
particular application, are stated or implied. PTSC and the author assume no responsibility for any errors or omissions,
and disclaim responsibility for any consequences resulting from the use of the information included herein.

Critical Applications Policy
Some applications of semiconductor products involve potential risks of personal injury, death, severe property damage, or
environmental damage. PTSC products are not authorized for use in such applications without a specific written
agreement signed by the appropriate PTSC officer. Use of TSC products in such applications is understood to be fully at
the risk of the customer.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

iii

Contents
IMPORTANT NOTICE.. ii

Disclaimer ... ii
Critical Applications Policy... ii

Figures... vi
Tables.. vii
Microprocessor Unit ... 3

Address Space... 5
Registers and Stacks .. 5
Programming Model.. 6
Instruction Set Overview... 7

ALU Operations.. 8
Branches, Skips, and Loops .. 10
Literals.. 10
Data Movement... 10
Loads and Stores... 10
Stack Data Management..11
Stack Cache Management... 12
Byte and Word Operations .. 12
Floating-Point Math ... 14
Debugging Features ... 14
On-Chip Resources ... 14
Miscellaneous ... 15

Stacks and Stack Caches.. 15
Stack-Page Exceptions.. 16
Stack Initialization .. 16
Stack Depth... 17
Stack Flush and Restore.. 17

Exceptions and Trapping... 18
Floating-Point Math Support ... 20

Data Formats.. 20
Status and Control Bits ... 20
GRS Extension Bits ... 21
Rounding... 21
Exceptions... 22

Hardware Debugging Support.. 22
Breakpoint... 23
Single-Step .. 23

Register mode ... 24
MPU Reset .. 26
Interrupts.. 26
Bit Inputs .. 26
Bit Outputs ... 27
Instruction Pre-fetch.. 27
Posted-Write... 27
On-Chip Resources .. 27

 IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

iv

Instruction Reference .. 27
ANS Forth Word Equivalents .. 28
Java Byte Code Equivalents ... 28
add .. 29
adda .. 29
addc .. 29
addexp... 30
and .. 30
bkpt ... 31
_cache... 33
call .. 34
cmp ... 34
copyb... 34
dbr... 35
dec... 35
denorm.. 35
_depth ... 36
di ... 36
divu ... 36
ei ... 37
eqz... 37
expdif .. 37
extexp.. 37
extsig... 38
_frame... 39
iand ... 40
inc ... 40
lcache.. 40
ld ... 41
ldo ... 42
ldepth .. 42
lframe.. 43
mloop_ .. 43
mulfs ... 44
muls... 45
mulu .. 45
mxm... 45
neg .. 45
nop .. 46
norml... 46
normr .. 47
notc ... 47
or... 48
pop .. 48
push... 50
replb.. 53
replw ... 53
replexp .. 53

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

v

ret.. 54
rev ... 54
rnd... 55
scache ... 55
sdepth.. 55
sexb ... 55
sexw .. 56
shift_ ... 56
shl_ ... 57
shr_ ... 58
skip_.. 59
split ... 60
st ... 61
step.. 62
sto ... 62
sub... 63
subb... 63
subexp ... 63
testb... 64
testexp ... 64
xcg... 64
xor... 65

Interrupt Controller ... 68
Resources ... 68
Operation ... 68
Interrupt Request Servicing.. 68
Recognizing Interrupts... 68
ISR Processing... 69

Bit Inputs ... 70
Resources ... 70
Input Sampling... 70
Interrupt Usage .. 71
General-Purpose Bits ... 71

Bit Outputs .. 73
Resources .. 73

On-Chip Resource Registers .. 73
Usage ... 73
Bus Interface .. 78

Posted Writes .. 78
Memory Fault ... 80

Timing Information ... 80

 IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

vi

 Figures
Figure 1 CPU Block Diagram ... 2
Figure 2 CPU Registers... 3
Figure 3 CPU Memory Map.. 4
Figure 4 Byte Order .. 5
Figure 5 Add Execution Example ... 6
Figure 6 CPU Instruction Format.. 9
Figure 7 Stack Exception Region.. 15
Figure 8 Floating-Point Number Formats ... 20
Figure 9 Register Mode... 25
Figure 10 Bit Input Block Diagram... 70
Figure 11 Bit Input Register.. 73
Figure 12 Interrupt Pending Register .. 74
Figure 13 Interrupt Under Service Register .. 74
Figure 14 Bit Output Register ... 75
Figure 15 Interrupt Enable Register .. 75
Figure 16 Memory Fault Address Register ... 76
Figure 17 Memory Fault Data Register... 76
Figure 18 Miscellaneous C Register ... 77

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

vii

Tables
Table 1 Instruction Bandwidth Comparison .. 3
Table 2 CPU Instruction Set .. 8
Table 3 ALU Instructions... 8
Table 4 Code example: Rotate ... 9
Table 5 CPU Branch Ranges.. 9
Table 6 Branch, Loop and Skip Instructions.. 9
Table 7 Literal Instructions.. 10
Table 8 Data Movement Instructions .. 10
Table 9 Load and Store Instructions ... 10
Table 10 Code Example: Complex Addressing Mode.. 11
Table 11 Code Example: Memory Move and Fill... 11
Table 12 Stack Data Management Instruction... 11
Table 13 Stack Cache Management Instruction... 12
Table 14 Byte and Word Operation Instructions... 12
Table 15 Code Example: Byte Store.. 13
Table 16 Code Example: Null-Terminated String Move ... 13
Table 17 Code Example: Null Character Search ... 13
Table 18 Code Example: Byte Search ... 14
Table 19 Floating Point Math Instruction .. 14
Table 20 Miscellaneous Instructions ... 14
Table 21 Debugging Instruction .. 14
Table 22 On-Chip Resources Instruction.. 14
Table 23 Code Example: Stack Initialization ... 16
Table 24 Code Example: Stack Depth... 17
Table 25 Code Example: Save Context ... 17
Table 26 Code Example: Restore Context .. 18
Table 27 Traps Dependent on System State.. 19
Table 28 Trap Priorities ... 19
Table 29 Traps Independent of System State ... 20
Table 30 GRS Extension Bit Manipulation Instructions ... 20
Table 31 Rounding Mode Action... 21
Table 32 Code Example: Floating-Point Multiply ... 22
Table 33 Code example: Memory Fault Service Routine .. 23
Table 34 Instructions that Hold-off Pre-fetch .. 27
Table 35 CPU Mnemonics and Opcodes (Mnemonic Order).. 66
Table 36 CPU Mnemonics and Opcodes (Opcode Order)... 67
Table 37 Code Example: ISR Vectors ... 69
Table 38 Code Example: Bit Input Without Zero-Persistence.. 71
Table 39 Code Example: CPU Usage of Bit Inputs .. 71
Table 40 Resource Register Reset Values ... 77
Table 41 Signal Descriptions .. 78
Table 42CPU Read Timing Parameters .. 81
Table 43 CPU Write Timing Parameters.. 82
Table 44 Memory Fault Operation Timing Parameters .. 84

 IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

viii

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

1

Purpose

This document describes the IGNITE processor.

PTSC’s IGNITE is a low-power, low-cost, stack-
architecture processor targeted specifically for embedded
applications. As a stack-architecture processor, the
IGNITE processor is ideal for applications that must run
Java™ at native speeds. These include laser printers,
ignition controllers, network routers, personal digital
assistants, set-top cable controllers, video games, pagers,
cell phones, and many other applications. But since C++
is semantically similar to Java, the IGNITE processor also
runs C and C++ efficiently, as well as stack-architecture
languages such as Forth and Postscript.

This data book provides the information required to
design products that use the IGNITE processor CPU.

Overview

The IGNITE processor is an implementation of the
ShBoom™ microprocessor architecture. In its full
implementation it is a highly integrated 32-bit RISC
processor that executes at a peak performance of one
instruction per CPU-clock cycle. The CPU is designed
specifically for use in those embedded applications for
which power consumption, CPU performance, and system
cost are deciding selection factors.

The IGNITE processor CPU instruction set is hard-
wired, allowing most instructions to execute in a single
cycle, without the use of pipelines or superscalar architec-
ture. A "flow-through" design allows the next instruction
to start before the prior instruction completes, thus
increasing performance.

The IGNITE processor contains 52 general-purpose
registers, including 16 global data registers, an index
register, a count register, a 16-deep addressable
register/return stack, and an 18-deep operand stack. Both
stacks contain an index register in the top element, are
cached on chip, and, when required, automatically spill to
and refill from external memory. The stacks minimize the
data movement typical of register-based architectures, and
also minimize memory accesses during procedure calls,
parameter passing, and variable assignments. Additionally,
the CPU contains a mode/status register, two stack
pointers, and 7 locally addressed on-chip resource
registers for I/O, control, configuration, and status.

Run Java at Native Speed: The stack architectures
of the IGNITE processor and the Java Virtual Machine
are very similar. This results in only a relatively simple
byte code translator (20K) being required to produce
executable native code from Java byte code, rather than a
full Just-in-Time (JIT) compiler (200–400K) as is
required for common processor architectures. The result is
much faster initial execution of Java programs and
significantly smaller memory requirements. Additionally,
hundreds of kilobytes of memory are saved due to the
reduced size of the translator itself.

Multiple Language Support: Most modern
languages are implemented on a stack model. The features
that allow the IGNITE processor to run Java efficiently
apply similarly to other languages such as C, C++, Forth
and Postscript.

Zero-Operand Architecture: Many RISC architec-
tures waste valuable instruction space—often 15 bits or
more per instruction—by specifying three possible
operands for every instruction. Zero-operand (stack)
architectures eliminate these operand bits, thus allowing
much shorter instructions—typically one-fourth the size—
and thus a higher instruction-execution bandwidth and
smaller program size. Stacks also minimize register saves
and loads within and across procedures, thus allowing
shorter instruction sequences and faster-running code.

Fast, Simple Instructions: Instructions are less
complex to decode and execute than those of conventional
RISC processors, allowing the IGNITE processor to issue
and complete instructions in a single CPU-clock cycle, as
often as every CPU-clock cycle.

Four-Instruction Buffer: Using 8-bit opcodes, the
CPU obtains up to four instructions from memory each
time an instruction fetch or pre-fetch is performed. These
instructions can be repeated without rereading them from
memory. This maintains high performance when
connected directly to DRAM, without the expense of a
cache.

Local and Global Registers: Local and global
registers minimize the number of accesses to data
memory. The local-register stack automatically caches up
to sixteen registers, and the operand stack up to eighteen
registers. As stacks, any allocated data space efficiently
nests and unnests across procedure calls. The sixteen
global registers provide storage for shared data.

Posted Write: Decouples the processor from data
writes to memory, allowing the processor to continue
executing after a write is posted.

 IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

2

Fully Static Design: A fully static design allows
running the clock from DC up to rated speed. Lower clock
speeds can be used to drastically cut power consumption.

Hardware Debugging Support: Both breakpoint
and single-step capability aid in debugging programs.

Floating-Point Support: Special instructions imple-
ment efficient single- and double-precision IEEE floating-

point arithmetic.
Interrupt Controller: Supports up to eight

prioritized levels with interrupt responses as fast as eight
CPU-clock cycles.

Eight Bit Inputs and Eight Bit Outputs: I/O bits
are available for CPU application use, thus reducing the
requirement for external logic.

prefetch

shift

next pc

multiplexer

decode/
execute

instruction
latch

fp ops

ALU

s0

s1

s2

s3

s4

r0

r1

r2

r3

+4/-4

mode

sa +4/-4

la +4/-4

x +4/-4

ct -1

sdepth +1/-1

ldepth +1/-1

g0

g1

g2

g15

+4

INTCtrap logic

force

global int
enable

int #
int req
int ack

control/status

32

32

32

3

32

2

Address Bus

Data Bus

reti
call

shift

D
at

a
Bu

s

Ad
dr

es
s

Bu
s

lo
ca

l r
eg

is
te

r s
ta

ck
 a

dd
re

ss
in

g

op
er

an
d

st
ac

k
ad

dr
es

si
ng

CPU PC +1

Control

On-Chip
Resource
Registers

address
data

miscc
mfltdata
mfltaddr
ioie
ioout
ioius
ioip
ioin

3

Figure 1 CPU Block Diagram

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

3

Microprocessor Unit

The CPU supports the ShBoom architectural
philosophy of simplification and efficiency of use through
its basic design in several interrelated ways.

Whereas most RISC processors use pipelines and
superscalar execution to execute at high clock rates, the
IGNITE processor uses neither. By having a simpler arc-
hitecture, the IGNITE processor issues and completes
most instructions in a single clock cycle. There are no
pipelines to fill and none to flush during changes in
program flow. Though more instructions are sometimes
required to perform the same procedure in the IGNITE
processor, the CPU operates at a higher clock frequency
than other processors of similar silicon size and
technology, thus giving comparable performance at
significantly reduced cost.

A microprocessor's performance is often limited by

how quickly it can be fed instructions from memory. The
CPU reduces this bottleneck by using 8-bit instructions so
that up to four instructions (an instruction group) can be
obtained during each memory access. Each instruction
typically takes one CPU-clock cycle to execute, thus
requiring four CPU-clock cycles to execute the instruction
group. Because a memory access can complete in four (or
even fewer) CPU-clock cycles, the next instruction group
can be available when execution of the previous group
completes. This makes it possible to feed instructions to
the processor at maximum instruction-execution
bandwidth without the cost and
complexity of an instruction
cache.

The zero-operand (stack)

architecture makes 8-bit
instructions possible. The stack
architecture eliminates the
requirement to specify source
and destination operands in
every instruction. By not using
opcode bits on every instruction
for operand specification, a
much greater bandwidth of
functional operations—up to
four times as high—is possible.
Table 1 depicts an example

IGNITE processor CPU instruction sequence that
demonstrates twice the typical RISC CPU instruction
bandwidth. The instruction sequence on the IGNITE
processor requires one-half the instruction bits, and the
uncached performance benefits from the resulting increase
in instruction bandwidth.

Table 1 Instruction Bandwidth Comparison

g0
g1
.
.
.
.
.
.
.
.
.
.
.
.
g14
g15

r0 r1 . .
. .
. .
. .
. .
. .
r14 r15

s0 s1 s2 s3 . .
. .
. .
. .
.
. s16
s17

. .

Global
Registers Local-Register

Stack
Operand Stack

All registers are 32 bits wide.

Addressable Unaddressable (used by cache logic)

x
ct
mode

Miscellaneous
Registers

la
sa

Figure 2 CPU Registers

g5 = g1 - (g2 + 1) + g3 - (g4 * 2)

Typical RISC MPU IGNITE CPU

push g1
push g2

add #1,g2,g5 inc #1

sub g1,g5,g5 sub

push g3
add g5,g3,g5 add

push g4
shl g4,#1,temp shl #1

sub
sub g5,temp,g5 pop g5

20 bytes 10 bytes

Example of twice the instruction
bandwidth available on the IGNITE CPU

 IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

4

Figure 3 CPU Memory Map

Stack CPUs are thus simpler than register-based

CPUs, and the IGNITE CPU has two hardware stacks to
take advantage of this: the operand stack and the local-
register stack. The simplicity is widespread and is
reflected in the efficient ways stacks are used during
execution.

The ALU processes data from primarily one source of
inputs—the top of the operand stack. The ALU is also
used for branch address calculations. Data bussing is thus
greatly reduced and simplified. Intermediate results
typically “stack up” to unlimited depth and are used
directly when needed, rather than requiring specific
register allocations and management. The stacks are
individually cached and spill and refill automatically,

eliminating software overhead for stack manipulation
typical in other RISC processors. Function parameters are
passed on, and consumed directly off of, the operand
stack, eliminating the need for most stack frame
management. When additional local storage is required,
the local-register stack supplies registers that efficiently
nest and unnest across functions. As stacks, the stack
register spaces are only allocated for data actually stored,
maximizing storage utilization and bus bandwidth when
registers are spilled or refilled—unlike architectures using
fixed-size register windows. Stacks speed context
switches, such as interrupt servicing, because registers do
not need to be explicitly saved before use—additional
stack space is allocated as required. The stacks thus
reduce the number of explicitly addressable registers
otherwise required, and speed execution by reducing data
location specification and movement. Stack storage is
inherently local, so the global registers supply non-local
register resources when required.

Eight-bit opcodes are too small to contain much

associated data. Additional bytes are necessary for
immediate values and branch offsets. However, variable-
length instructions usually complicate decoding and
complicate and lengthen the associated data access paths.
To simplify the problem, byte literal data is taken only
from the rightmost byte of the instruction group,
regardless of the location of the byte literal opcode within
the group. Similarly, branch offsets are taken as all bits to
the right of the branch opcode, regardless of the opcode
position. For 32-bit literal data, the data is taken from a
subsequent memory cell. These design choices ensure that
the required data is always right-justified for placement on
the internal data busses, reducing interconnections and
simplifying and speeding execution.

Since most instructions decode and execute in a
single clock cycle, the same ALU that is used for data
operations is also available, and is used, for branch
address calculations. This eliminates an entire ALU often
required for branch offset calculations.

Rather than consume the chip area for a single-cycle
multiply-accumulate unit, the higher clock speed of the
CPU reduces the execution time of conventional multi-
cycle multiply and divide instructions. For efficiently
multiplying by constants, a fast multiply instruction
multiplies only by the specified number of bits.

Boot Signature
CPU Hardware Reset

Boot Program

80000000
80000008

FFFFFFFF

I/O Devices

0

100
104
108
10c
110
114
118
11c
120
124
128
12c
130
134
138 13c
140
144
148
14c

Interrupt 0
Interrupt 1
Interrupt 2
Interrupt 3
Interrupt 4
Interrupt 5 Interrupt 6
Interrupt 7 FP Exponent
FP Underflow
FP Overflow FP Normalize
FP Round
Breakpoint
Single Step
Memory Fault
LRS Overflow
LRS Underflow
OS Overflow
OS Underflow

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

5

Rather than consume the chip area for a barrel shifter,
the counted bit-shift operation is “smart” to first shift by
bytes, and then by bits, to minimize the cycles required.
The shift operations can also shift double cells (64 bits),
allowing bit-rotate instructions to be easily synthesized.

Although floating-point math is useful, and
sometimes required, it is not heavily used in embedded
applications. Rather than consume the chip area for a
floating-point unit, CPU instructions to efficiently perform
the most time-consuming aspects of basic IEEE floating-
point math operations, in both single and double
precision, are supplied. The operations use the “smart”
shifter to reduce the cycles required.

Byte read and write operations are available, but
cycling through individual bytes is slow when scanning
for byte values. These types of operations are made more
efficient by instructions that operate on all of the bytes
within a cell at once.

Address Space

 The CPU fully supports a linear four-gigabyte address
space for all program and data operations.

31 07 8 15 16 23 24

b yt e d at a

cell d at a

0 1 2 3

Bit

Byt e

Big Endian Byt e Order

 Figure 4 Byte Order

Several instructions or operations expect addresses

aligned on four-byte (cell) boundaries. These addresses
are referred to as cell-aligned. Only the upper 30 bits of
the address are used to locate the data; the two least-
significant address bits are ignored but appear externally.
Within a cell, the high order byte is located at the low byte
address. The next lower-order byte is at the next higher
address, and so on. For example, the value 0x12345678
would exist at byte addresses in memory, from low to high
address, as 12 34 56 78. See Figure 4.

Registers and Stacks

 The register set contains 52 general-purpose registers,
a mode/status register, and two stack pointers. See Figure
2. It also contains 7 local address-mapped on-chip
resource registers used for I/O, configuration, and status.

The operand stack contains eighteen registers and
operates as a push-down stack, with direct access to the
top three registers (s0–s2). These registers and the
remaining registers (s3–s17) operate together as a stack
cache. Arithmetic, logical, and data-movement
operations, as well as intermediate result processing, are
performed on the operand stack. Parameters are passed
to procedures and results are returned from procedures
on the stack, without the requirement of building a stack
frame or necessarily moving data between other
registers and the frame. As a true stack, registers are
allocated only as required, resulting in efficient use of
available storage. The external operand stack is
addressed by register sa.

The local-register stack contains sixteen registers
and operates as a push-down stack with direct access to
the first fifteen registers (r0–r14). Theses registers and
the remaining register (r15) operate together as a stack
cache. As a stack, they are used to hold subroutine
return addresses and automatically nest local-register
data. The external local-register stack is addressed by
register la.
 Both cached stacks automatically spill to memory
and refill from memory, and can be arbitrarily deep.
Additionally, s0 and r0 can be used for memory access.
See Stacks and Stack Caches.

The use of stack-cached operand and local registers
improve performance by eliminating the overhead
required to save and restore context (when compared to
processors with only global registers available). This
allows for very efficient interrupt and subroutine
processing.

In addition to the stacks are sixteen global registers
and three other registers. The global registers (g0–g15)
are used for data storage, and as operand storage for the
CPU multiply and divide instructions (g0). Remaining
are mode, which contains mode and status bits; x, which
is an index register (in addition to s0 and r0); and ct,
which is a loop counter and also participates in floating-
point operations.

 IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

6

Programming Mode

 For those familiar with the Java Virtual Machine,
American National Standard Forth (ANS Forth),
Postscript, or Hewlett-Packard calculators that use
postfix notation, commonly known as Reverse Polish
Notation (RPN), programming the IGNITE CPU will
in many ways be very familiar.

A CPU architecture can be classified as to the
number of operands specified within its instruction
format. Typical 16-bit and 32-bit CISC and RISC CPUs
are usually two- or three-operand architectures, whereas
smaller microcontrollers are often one-operand
architectures. In each instruction, two- and three-
operand architectures specify a source and destination,
or two sources and a destination, whereas one-operand
architectures specify only one source and have an
implicit destination, typically the accumulator.
Architectures are also usually not pure. For example,
one-operand architectures often have two-operand
instructions to specify both a source and destination for
data movement between registers.

The IGNITE CPU is a zero-operand architecture,
known as a stack computer. Operand sources and
destinations are assumed to be on the top of the operand
stack, which is also the accumulator. An operation such
as add uses both source operands from the top of the
operand stack, adds them, and returns the result to the
top of the operand stack, thus causing a net reduction of
one in the operand stack depth. See Figure 5.
 Most ALU operations behave similarly, using two
source operands and returning one result operand to the
operand stack. A few ALU operations use one source
operand and return one result operand to the operand
stack. Some ALU and other operations also require a non-
stack register, and a very few do not use the operand stack
at all.

Non-ALU operations are also similar. Loads (memory
reads) either use an address on the operand stack or in a
specified register, and place the retrieved data on the
operand stack. Stores (memory writes) use either an
address on the operand stack or in a register, and use data
from the operand stack. Data movement operations push
data from a register onto the operand stack, or pop data
from the stack into a register.

Op erand St ack

a
b
c
d
e
f

s0
s1
s2
s3
s4
s5
.
.

a +
c
d
e
f

s0
s1
s2
s3
s4
s5
.
.

add

 Figure 5 Add Execution Example

Once data is on the operand stack it can be used for
any instruction that expects data there. The result of an
add, for instance, can be left on the stack indefinitely,
until used by a subsequent instruction. See Table 1.
Instructions are also available to reorder the data in the
top few cells of the operand stack so that prior results can
be accessed when required. Data can also be removed
from the operand stack and placed in local or global
registers to minimize or eliminate later reordering of stack
elements. Data can even be popped from the operand
stack and restacked by pushing it onto the local-register
stack.

Computations are usually most efficiently performed
by executing the most deeply nested computations first,
leaving the intermediate results on the operand stack, and
then combining the intermediate results as the
computation unnests. If the nesting of the computation is
complex, or if the intermediate results are to be used some
time later after other data would have been added to the
operand stack, the intermediate results can be removed
from the operand stack and stored in global or local
registers.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

7

Global registers are used directly and maintain their
data indefinitely. Local registers are registers within the
local-register stack cache and, as a stack, must first be
allocated. Allocation can be performed by popping data
from the operand stack and pushing it onto the local-
register stack one cell at a time. It can also be preformed
by allocating a block of uninitialized stack registers at one
time; the uninitialized registers are then initialized by
popping data, one cell at a time, into the registers in any
order. The allocated local registers can be deallocated by
pushing data onto the operand stack by popping it off of
the local register stack one cell at a time, and then
discarding from the operand stack the data that is not
required. Alternatively, the allocated local registers can be
deallocated by first saving any data required from the
registers, and then deallocating a block of registers at one
time. The method selected depends on the number of
registers required and whether the data on the operand
stack is in the required order.

Registers on both stacks are referenced relative to the
tops of the stacks and are thus local in scope. What was
accessible in r0, for example, after one cell has been push
onto the local-register stack, is accessible as r1; the newly
pushed value is accessible as r0.

Parameters are passed to and returned from subrou-
tines on the operand stack. An unlimited number of
parameters can be passed and returned in this manner. An
unlimited number of local-register allocations can also be
made. Parameters and allocated local registers thus
conveniently nest and unnest across subroutines and
program basic blocks.

Subroutine return addresses are pushed onto the
local-register stack and thus appear as r0 on entry to the
subroutine, with the previous r0 accessible as r1, and so
on. As data is pushed onto the stacks and the available
register space fills, registers are spilled to memory when
required. Similarly, as data is removed from the stacks
and the register space empties, the registers are refilled
from memory as required. Thus from the program’s
perspective, the stack registers are always available.

Instruction Set Overview

Table 2 lists the CPU instructions; Table 35, page 66,
and Table 36, page 67, list the mnemonics and opcodes.
All instructions consist of eight bits, except for those that
require immediate data. This allows up to four
instructions (an instruction group) to be obtained on each
instruction fetch, thus reducing memory-bandwidth
requirements compared to typical RISC machines with
32-bit instructions. This characteristic also allows looping
on an instruction group (a micro-loop) without additional
instruction fetches from memory, further increasing
efficiency. Instruction formats are depicted in Figure 6.

 IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

8

Table 2 CPU Instruction Set

ALU Operations

 Almost all ALU operations occur on the top of the
operand stack in s0 and, if required, s1. A few operations
also use g0, ct, or pc.

Only one ALU status bit, carry, is maintained and is
stored in mode. Since there are no other ALU status
bits, all other conditional operations are performed by
testing s0 on the fly. eqz is used to reverse the zero/non-
zero state of s0. Most arithmetic operations modify
carry from the result produced out of bit 31 of s0. The
instruction add pc is available to perform pc-relative
data references. adda is available to perform address
arithmetic without changing carry. Other operations
modify carry as part of the result of the operation.

s0 and s1 can be used together for double-cell
shifts, with s0 containing the more-significant cell and
s1 the less-significant cell of the 64-bit value. Both
single-cell and double-cell shifts transfer a bit between
carry and bit 31 of s0. Code depicting single-cell rotates
constructed from the double-cell shift is given in Table
4.

All ALU instruction opcodes are formatted as 8-bit
values with no encoded fields.

Table 3 ALU Instructions

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

9

Table 4 Code example: Rotate

Offset Bits

Offset Range in Bytes

3

-16/+12

11

-4096/+4092

19

-1048576/+1048572

27

-268435456/+268435452

Note:
Encoded offset is in cells. Offset is added to the address of
the beginning of the cell containing the branch to compute
the destination address.

Table 5 CPU Branch Ranges

Table 6 Branch, Loop and Skip Instructions

offset
offset

offset branch
branch opcode opcodeopcode

opcodeopcode
opcode branch
branch

push.b opcodeopcode value

opcode push.b opcode value

opcode opcodepush.b value

push.n

opcodepush.lopcode opcode

opcodeopcode opcode opcode

data for first push.l

data for fourth push.l (if present)

opcodeopcodeopcode opcode

push long
(any positions)

push byte

push nibble
(any positions)

Branches

Literals

All

data for second push.l (if present)
data for third push.l (if present)

3-bit offset
11-bit offset
19-bit offset
27-bit offset

opcode opcode opcode

Figure 6 CPU Instruction Format

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

10

Branches, Skips, and Loops
 The instructions br, bz, call and dbr are variable-
length. The three least-significant bits in the opcode and
all of the bits in the current instruction group to the right
of the opcode are used for the relative branch offset. See
Figure 6 and Table 5. Branch destination addresses are
cell-aligned to maximize the range of the offset and the
number of instructions that are executed at the destination.
If an offset is not of sufficient size for the branch to reach
the destination, the branch must be moved to an
instruction group where more offset bits are available, or a
register indirect branch, br [] or call [], can be used.
Register indirect branches use an absolute byte-aligned
address from s0. The instruction add pc can be used if a
computed pc-relative branch is required.

The mloop_ instructions are referred to as micro-
loops. If specified, a condition is tested, and then ct is
decremented. If a termination condition is not met,
execution continues at the beginning of the current
instruction group. Micro-loops are used to re-execute
short instruction sequences without re-fetching the
instructions from memory. See Table 11.

Other than branching on zero with bz, conditional
branching is performed with the skip_ instructions. They
terminate execution of the current instruction group and
continue execution at the beginning of the next instruction
group. They can be combined with the br, call, dbr, and ret
(or other instructions) to create additional flow-of-control
operations.

Literals
 To maximize opcode bandwidth, three sizes of literals
are available. The data for four-bit (nibble) literals, with a
range of -7 to +8, is encoded in the four least-significant
bits of the opcode; the numbers are encoded as two’s-
complement values with the value 1000 binary decoded as
+8. The data for eight-bit (byte) literals, with a range of 0–
255, is located in the right-most byte of the instruction
group, regardless of the position of the opcode within the
instruction group. The data for 32-bit (long, or cell)
literals is located in a cell following the instruction group

in the instruction stream. Multiple push.l instructions in
the same instruction group access consecutive cells
immediately following the instruction group. See Figure
6.

Table 8 Data Movement Instructions

Data Movement
 Register data is moved by first pushing the register
onto the operand stack, and then popping it into the
destination register. Memory data is moved similarly. See
Loads and Stores, above.

The opcodes for the data-movement instructions that
access gi and ri are 8-bit values with the register number
encoded in the four least-significant bits. All other data-
movement instruction opcodes are formatted as 8-bit
values with no encoded fields.

Table 9 Load and Store Instructions

Loads and Stores
 r0 and x support register-indirect addressing and also
register-indirect addressing with predecrement by four or

postincrement by four. These modes allow for efficient
memory reference operations. Code depicting memory
move and fill operations is given in Table 11.

Register indirect addressing can also be performed
with the address in s0. Other addressing modes can be
implemented using adda. Table 10 depicts the code for a
complex memory reference operation.

push.b push.l push.n

Table 7 Literal Instructions

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

11

The memory accesses depicted in the examples above
are cell-aligned, with the two least-significant bits of the
memory addresses ignored. Memory can also be read at
byte addresses with ld.b [] and written at byte addresses
using x and replb. Similar operations are available for 16-
bit words. See Byte and Word Operations.

Table 10 Code Example: Complex Addressing
Mode

The CPU contains a one-level posted write. This

allows the CPU to continue executing while the posted
write is in progress and can significantly reduce execution
time. Memory coherency is maintained by giving the
posted write priority bus access over other CPU bus
requests, thus writes are not indefinitely deferred. In the
code examples in Table 11, the loop execution overhead is
zero when using posted writes. Posted writes are enabled
by setting mspwe in resource register miscc.

Table 11 Code Example: Memory Move and Fill
All load and store instruction opcodes are formatted

as 8-bit values with no encoded fields.

Stack Data Management
 Operand stack data is used from the top of the stack
and is generally consumed when processed. This can
require the use of instructions to duplicate, discard, or
reorder the stack data. Data can also be moved to the
local-register stack to place it temporarily out of the way,
or to reverse its stack access order, or to place it in a local
register for direct access. See the code examples in Table
11.

Table 12 Stack Data Management Instruction

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

12

If more than a few stack data management

instructions are required to access a given operand stack
cell, performance usually improves by placing data in a
local or global register. However, there is a finite supply
of global registers, and local registers, at some point, spill
to memory. Data should be maintained on the operand
stack only while it is efficient to do so. In general, if the
program requires frequent access to data in the operand
stack deeper than s2, that data, or other more accessible
data, should be placed in directly addressable registers to
simplify access.

To use the local-register stack, data can be popped
from the operand stack and pushed onto the local-register
stack, or data can be popped from the local-register stack
and pushed onto the operand stack. This mechanism is
convenient to move a few cells when the resulting operand
stack order is acceptable. When moving more data, or
when the data order on the operand stack is not as desired,
lframe can be used to allocate or deallocate the required
local registers, and then the registers can be written and
read directly. Using lframe also has the advantage of
making the required local-register stack space available by
spilling the stack as a continuous sequence of bus transac-
tions, which minimizes the number of RAS cycles
required when writing to DRAM. The instruction sframe
behaves similarly to lframe, and is primarily used to
discard a number of cells from the operand stack.

All stack data management instruction opcodes are
formatted as 8-bit values with no encoded fields.

Stack Cache Management
 Other than initialization, and possibly monitoring of
overflow and underflow via the related traps, the stack
caches do not require active management. Several
instructions exist to efficiently manipulate the caches for
context switching, status checking, and spill and refill
scheduling.

The _depth instructions can be used to determine the
number of cells in the SRAM part of the stack caches.
This value can be used to discard the values currently in
the cache, to later restore the cache depth with _cache, or
to compute the total on-chip and external stack depth.

The _cache instructions can be used to ensure either
that data is in the cache or that space for data exists in the
cache, so that spills and refills occur at preferential times.
This allows more control over the caching process and
thus a greater degree of determinism during the program
execution process. Scheduling stack spills and refills in

this way can also improve performance by minimizing the
RAS cycles required due to stack memory accesses.

The _frame instructions can be used to allocate a
block of uninitialized register space at the top of the
SRAM part of a stack, or to discard such a block of
register space when no longer required. They, like the
_cache instructions, can be used to group stack spills and
refills to improve performance by minimizing the RAS
cycles required due to stack memory accesses.

See Stacks and Stack Caches on page 15 for more
information.

All stack cache management instruction opcodes are
formatted as 8-bit values with no encoded fields.

Byte and Word Operations
 Bytes can be addressed and read from memory
directly and can be addressed and written to memory with
the code depicted in Table 15. Words (16-bit values) are
handled similarly.

Instructions are available for manipulating bytes
within cells. A byte can be replicated across a cell, the
bytes within a cell can be tested for zero, and a cell can be
shifted by left or right by one byte. Code examples
depicting scanning for a specified byte, scanning for a null
byte, and moving a null-terminated string in cell-sized
units are given below.

All byte operation instruction opcodes are formatted
as 8-bit values with no encoded fields.

Table 13 Stack Cache Management Instruction

Table 14 Byte and Word Operation Instructions

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

13

Table 15 Code Example: Byte Store

Table 16 Code Example: Null-Terminated String
Move

Table 17 Code Example: Null Character Search

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

14

Table 18 Code Example: Byte Search

 Floating-Point Math
The instructions above are used to implement efficient
single- and double-precision IEEE floating-point software
for basic math functions (+, -, *, /), and to aid in the
development of floating-point library routines. The
instructions perform primarily the normalization, denor-
malization, exponent arithmetic, rounding and detection of
exceptional numbers and conditions that are otherwise

execution-time-intensive when programmed conven-
tionally. See Floating-Point Math Support on page 23.

All floating-point math instruction opcodes are
formatted as 8-bit values with no encoded fields.

Table 20 Debugging Instruction

Debugging Features
 Each of these instructions signals an exception and
traps to an application-supplied execution-monitoring
program to assist in the debugging of programs. See
Debugging Support.

Both debugging instruction opcodes are formatted as
8-bit values with no encoded fields.

On-Chip Resources
 These instructions allow access to the on-chip
peripherals, status registers, and configuration registers.
All registers can be accessed with the ldo [] and sto []
instructions. The first six registers each contain eight bits,
which are also bit addressable with ldo.i [] and sto.i [].
See On-Chip Resource Registers.

All on-chip resource instruction opcodes are
formatted as 8-bit values with no encoded fields.

All on-chip resource instruction opcodes are
formatted as 8-bit values with no encoded fields.

Table 19 Floating Point Math Instruction

Table 21 On-Chip Resources Instruction

Table 22 Miscellaneous Instructions

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

15

Miscellaneous
 The disable- and enable-interrupt instructions are the
only system control instructions; they are supplied to
make interrupt processing more efficient. Other system
control functions are performed by setting or clearing bits
in mode, or in an on-chip resource register. The
instruction split separates a 32-bit value into two cells,
each containing 16 bits of the original value.

All miscellaneous instruction opcodes are formatted
as 8-bit values with no encoded fields.

Stacks and Stack Caches

 The stack caches optimize use of the stack register
resources by minimizing the overhead required for the
allocation and saving of registers during programmed or
exceptional context switches (such as call subroutine
execution and trap or interrupt servicing).

The local-register stack consists of an on-chip
SRAM array that is addressed to behave as a conven-
tional last-in, first-out queue. Local registers r0–r15 are
addressed internally relative to the current top of stack.
The registers r0–r14 are individually addressable and are
always contiguously allocated and filled. If a register is
accessed that is not in the cache, all the lower-ordinal
registers are read in to ensure a contiguous data set.

The operand stack is constructed similarly, with the

addition of two registers in front of the SRAM stack
cache array to supply inputs to the ALU. These registers
are designated s0 and s1, and the SRAM array is
designated s2–s17. Only registers s0, s1 and s2 are
individually addressable, but otherwise the operand stack
behaves similarly to the local-register stack. Whereas the
SRAM array, s2–s17, can become “empty” (see below),
s0 and s1 are always considered to contain data.

The stack caches are designed to always allow the
current operation to execute to completion before an
implicit stack memory operation is required to occur. No
instruction explicitly pushes or explicitly pops more than
one cell from either stack (except for stack management
instructions). Thus to allow execution to completion, the
stack cache logic ensures that there is always one or more
cells full and one or more cells empty in each stack cache
(except immediately after reset, see Stack Initialization)
before instruction execution. If, after the execution of an

instruction, this is not the case on either stack, the
corresponding stack cache is automatically spilled to
memory or refilled from memory to reach this condition
before the next instruction is allowed to execute.
Similarly, the instructions _cache, _frame, pop sa, and
pop la, which explicitly change the stack cache depth,
execute to completion, and then ensure the above
conditions exist.

Thus r15 or s17 can be filled by the execution of an
instruction, but they are spilled before the next instruction
executes. Similarly, r0 and s2 can be emptied by the
execution of an instruction, but they are filled before the
next instruction executes.

The stacks can be arbitrarily deep. When a stack
spills, data is written at the address in the stack pointer
and then the stack pointer is decremented by four
(postdecremented stack pointer). Conversely, when a
stack refills, the stack pointer is incremented by four, and
then data is read from memory (preincremented stack
pointer). The stack pointer thus points to the next location

masked addr = 0x380

masked addr = 0x200

masked addr = 0x000

masked addr = addr AND 0x380

Boundary Region

Boundary Region

Middle Region

0x…000

0x…200

0x…3FF

1K Page
Address

0x…380

0x…27F

0x…07F

Figure 7 Stack Exception Region

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

16

to write and the stacks grow from higher to lower memory
addresses. The stack pointer for the operand stack is sa,
and the stack pointer for the local-register stack is la.

Since the stacks are dynamically allocated memory
areas, some amount of planning or management is
required to ensure the memory areas do not overflow or
underflow. The simplest is to allocate a sufficiently large
memory area so that overflow conditions won’t occur. In
this case, a correctly written program does not produce
underflow. Alternatively, stack memory can be
dynamically allocated or monitored through the use of
stack-page exceptions.

Stack-Page Exceptions
 Stack-page exceptions occur on any stack-cache
memory access near the boundary of any 1024-byte
memory page to allow overflow and underflow protection
and stack memory management. To prevent thrashing
stack-page exceptions near the margins of the page
boundary areas, once a boundary area is accessed and the
corresponding stack-page exception is signaled, the stack
pointer must move to the middle region of the stack page
before another stack-page exception can be signaled. See
Figure 9.

Stack-page exceptions enable stack memory to be
managed by allowing stack memory pages to be
reallocated or relocated when the edges of the current
stack page are approached. The boundary regions of the
stack pages are located 32 cells from the ends of each
page to allow even a _cache or _frame instruction to
execute to completion and to allow for the corresponding
stack cache to be emptied to memory. Using the stack-
page exceptions requires that only 2 KB of addressable
memory be allotted to each stack at any given time: the
current stack page and the page near the most recently
encroached boundary.

Each stack supports stack-page overflow and stack-
page underflow exceptions. These exception conditions
are tested against the memory address that is accessed
when the corresponding stack spills or refills between the
execution of instructions. mode contains bits that signal
local-stack overflow, local-stack underflow, operand stack
overflow and operand stack underflow, as well as the
corresponding trap enable bits.

The stack-page exceptions have the highest priority of
all of the traps. As this implies, it is important to consider
carefully the stack effects of the stack trap handler code so
that stack-page boundaries are not be violated during its

execution. Additionally, a memory fault must not occur
during a stack page access. The stack page exceptions are
intended to be used to ensure valid stack pages can always
be accessed without memory faults.

Since stack-page exceptions can occur on any stack
spill or refill, usage of certain stack-cache management
instructions (_depth and _cache) must be modified to
ensure the expected result. A stack-page exception can
occur after the stack-cache management instruction and
thus modify the cache state. To prevent this, the
instruction must complete without a stack spill or refill
that would cause a stack-page exception. This can be
accomplished by either causing a similar stack effect prior
to executing the instruction, or by executing the
instruction twice in immediate sequence. See the supplied
stack management code examples in this section.

Table 23 Code Example: Stack Initialization

Stack Initialization
 After CPU reset both of the CPU stacks should be
considered uninitialized until the corresponding stack
pointers are loaded, and this should be one of the first
operations performed by the CPU.

After a reset, the stacks are abnormally empty. That
is, r0 and s2 have not been allocated, and are allocated on
the first push operation to, or stack pointer initialization
of, the corresponding stack. However, popping the pushed
cell causes that stack to be empty and require a refill. The
first pushed cell should therefore be left on that stack, or
the corresponding stack pointer should be initialized,
before the stack is used further. See Table 23.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

17

Stack Depth
 The total number of cells on each stack can readily be
determined by adding the number of cells that have spilled
to memory and the number of cells in the on-chip caches.
See Table 24.

Table 25 Code Example: Save Context

Stack Flush and Restore
 When performing a context switch, it is necessary
to spill the data in the stack caches to memory so that
the stack caches can be reloaded for the new context.

Table 24 Code Example: Stack Depth

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

18

Attention must be given to ensure that the parts

of the
stack caches that are always maintained on-chip, r0
and s0–s2, are forced into the spillable area of the
stack caches so that they can be written to memory.
Code examples are given for context switches that
include flushing and restoring the caches in Table 25
and Table 26, respectively.

Exceptions and Trapping

 Exception handling is precise and is managed by
trapping to executable-code vectors in low memory.
Each 32-bit vector location can contain up to four
instructions. This allows servicing the trap within
those four instructions or branching to a longer trap
routine. Traps are prioritized and nested to ensure
proper handling. The trap names and executable
vector locations are shown in Figure 3.

Table 26 Code Example: Restore Context

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

19

Table 27 Traps Dependent on System State

An exception is said to be signaled when the defined

conditions exist to cause the exception. If the trap is
enabled, the trap is then processed. Traps are processed by
the trap logic, which causes a call subroutine to the
associated executable-code-vector address. When multiple
traps occur concurrently, the lowest-priority trap is
processed first, but before the executable-code vector is
executed, the next-higher-priority trap is processed, and so
on, until the highest-priority trap is processed. The
highest-priority trap’s executable-code vector then
executes. The nested executable-code-vector return

addresses unnest as each trap handler executes ret, thus
producing the prioritized trap executions.

Interrupts are disabled during trap processing and
nesting, until an instruction that begins in byte one of an
instruction group is executed. Interrupts do not nest with
the traps since their request state is maintained in the
INTC registers.

Table 28 lists the priorities of each trap. Traps that
can occur explicitly due to the data processed or instruc-
tion executed are listed in Table 29. Traps that can occur
due to the current state of the system, concurrently with
the traps in Table 29, are listed in Table 27.

Table 28 Trap Priorities

Stack Depth

Change

Operand

Stack

Local-

Register
Stack

Traps

+n

0

Operand Stack Overflow

–n

0

Operand Stack Underflow

0

+1

Local Stack Overflow

0

–1

Local Stack Underflow

+1

-n

Local Stack Underflow
Operand Stack Overflow
Local Stack Underflow and
Operand Stack Overflow

–1

+n

Local Stack Overflow
Operand Stack Underflow
Local Stack Overflow and Op-
erand Stack Underflow

–1

–n

Local Stack Underflow
Operand Stack Underflow
Local Stack Underflow and
Operand Stack Underflow

Notes:
1. +n > 0, –n < 0
2. If the instruction reads or writes memory or if a posted
write is in progress, a memory fault can also occur.
3. If the instruction is single-stepped, a single-step trap also
occurs.
4. If any trap occurs, a local-register stack overflow could
also occur.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

20

Table 29 Traps Independent of System State

Floating-Point Math Support
 The CPU supports single-precision (32-bit) and
double-precision (64-bit) IEEE floating-point math
software. Rather than a floating-point unit and the silicon
area it would require, the CPU contains instructions to
perform most of the time-consuming operations required
when programming basic floating-point math operations.
Existing integer math operations are used to supply the
core add, subtract, multiply, and divide functions, while
special instructions are used to efficiently manipulate the
exponents and detect exception conditions. Additionally, a
three-bit extension to the top one or two stack cells
(depending on the precision) is used to aid in rounding
and to supply the required precision and exception
signaling operations.

exp onen sign if ican
31 30 23 22 0

exp onen sign if icand
31 30 0

sign if icand
31 0

20 19

Single Precision

Double Precision

h id den sign

sign h id den

Figure 8 Floating-Point Number Formats

Data Formats
 Though single- and double-precision IEEE formats
are supported, from the perspective of the CPU, only 32-
bit values are manipulated at any one time (except for
double shifting). See Figure 8. The CPU instructions
directly support the normalized data formats depicted.
The related denormalized formats are detected by testexp
and fully supportable in software.
Status and Control Bits
 mode contains 13 bits that set floating-point
precision, rounding mode, exception signals, and trap
enables. See Figure 9.

Table 30 GRS Extension Bit Manipulation
Instructions

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

21

GRS Extension Bits
 To maintain the precision required by the IEEE
standard, more significand bits are required than are held
in the IEEE format numbers. These extra bits are used to
hold bits that have been shifted out of the right of the
significand. They are used to maintain additional
precision, to determine if any precision has been lost
during processing, and to determine whether rounding
should occur. The three bits appear in mode so they can be
saved, restored and manipulated. Individually, the bits are
named guard_bit, round_bit and sticky_bit. Several
instructions manipulate or modify the bits. See Table 30.

When denorm and normr shift bits into the GRS
extension, the source of the bits is always the least-
significant bits of the significand. In single-precision
mode the GRS extension bits are taken from s0, and in
double-precision mode the bits are taken from s1. For
conventional right shifts, the GRS extension bits always
come from the least significant bits of the shift (i.e., s0 if a
single shift and s1 if a double shift). The instruction
norml is the only instruction to shift bits out of the GRS
extension; it shifts into s0 in single-precision mode and
into s1 in double-precision mode. Conventional left shifts
always shift in zeros and do not affect the GRS extension
bits.

Rounding
 The GRS extension maintains three extra bits of
precision while producing a floating-point result. These
bits are used to decide how to round the result to fit the
destination format. If one views the bits as if they were
just to the right of the binary point, then guard_bit has a
position value of one-half, round_bit has a positional
value of one-quarter, and sticky_bit has a positional value
of one-eighth. The rounding operation selected by
fp_round_mode uses the GRS extension bits and the sign
bit of ct to determine how rounding occurs. If guard_bit is
zero the value of GRS extension is below one-half. If
guard_bit is one the value of GRS extension is one-half or
greater. Since the GRS extension bits are not part of the
destination format they are discarded when the operation
is complete. This information is the basis for the operation
of the instruction rnd.

Sign of
ct

G

R

S

Action

Round to nearest or even

x

0

x

x

do nothing

x

1

0

0

increment s0, clear bit 0
of s0

x

1

any 1

increment s0

Round toward negative infinity

0

x

x

x

do nothing

1

0

0

0

do nothing

1

any 1

increment s0

Round toward positive infinity

0

0

0

0

do nothing

0

any 1

increment s0

1

x

x

x

do nothing

Round toward zero

x

x

x

x

do nothing

Table 31 Rounding Mode Action

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

22

Table 32 Code Example: Floating-Point Multiply

Most rounding adjustments by rnd involve doing

nothing or incrementing s0. Whether this is rounding
down or rounding up depends on the sign of the floating-
point result that is in ct. If the GRS extension bits are non-
zero, then doing nothing has the effect of “rounding
down” if the result is positive, and “rounding up” if the
result is negative. Similarly, incrementing the result has
the effect of “rounding up” if the result is positive and
“rounding down” if the result is negative. If the GRS
extension bits are zero then the result was exact and
rounding is not required. See Table 31.

In practice, the significand (or the lower cell of a
double-precision significand) is in s0, and the sign and
exponent are in ct. carry is set if the increment from rnd
carried out of bit 31 of s0; otherwise, carry is cleared.
This allows carry to be propagated into the upper cell of a
double-precision significand.

Exceptions
 To speed processing, exception conditions detected
by the floating-point instructions set exception signaling
bits in mode and, if enabled, trap. The following traps are
supported:

• Exponent signaled from testexp
• Underflow signaled from norml, addexp,

subexp
• Overflow signaled from normr, addexp,

subexp
• Normalize signaled from denorm, norml,

normr
• Rounded signaled from rnd

Exceptions are prioritized when the instruction completes
and are processed with any other system exceptions or
traps that occur concurrently. See Exceptions and
Trapping.

• Exponent Trap: Detects special-case exponents. If the
tested exponent is all zeros or all ones, carry is set and the
exception is signaled. Setting carry allows testing the
result without processing a trap.
• Underflow Trap: Detects exponents that have become
too small due to calculations or decrementing while
shifting.
• Overflow Trap: Detects exponents that have become
too large due to calculations or incrementing while
shifting.
• Normalize Exception: Detects bits lost due to shifting
into the GRS extension. The exception condition is tested
at the end of instruction execution and is signaled if any of
the bits in the GRS extension are set. Testing at this time
allows normal right shifts to be used to set the GRS
extension bits for later floating-point instructions to test
and signal.
• Rounded Exception: Detects a change in bit zero of
s0 due to rounding.

Hardware Debugging Support

 The CPU contains a breakpoint instruction, bkpt, and
a single-step instruction, step. The instruction bkpt
executes the breakpoint trap and supplies the address of
the bkpt opcode to the trap handler. This allows execution
at full processor speed up to the breakpoint, and then

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

23

execution in a program-controlled manner following the
breakpoint. step executes the instruction at the supplied
address, and then executes the single-step trap. The single-
step trap can efficiently monitor execution on an
instruction-by-instruction basis.

Breakpoint
 The instruction bkpt performs an operation similar to
a call subroutine to address 0x134, except that the return
address is the address of the bkpt opcode. This behavior is
required because, due to the instruction push.l, the address
of a call subroutine cannot always be determined from its
return address.

Commonly, bkpt is used to temporarily replace an
instruction in an application at a point of interest for
debugging. The trap handler for bkpt typically restores the
original instruction, displays information for the user, and
waits for a command. Or, the trap handler could be
implemented as a conditional breakpoint to check for a
termination condition (such as a register value or the
number of executions of this particular breakpoint),
continuing execution of the application until the condition
is met. The advantage of bkpt over step is that the
applications executes at full speed between breakpoints.

Single-Step
 The instruction step is used to execute an application
program one instruction at a time. It acts much like a
return from subroutine, except that after executing one
instruction at the return address, a trap to address 0x138
occurs. The return address from the trap is the address of
the next instruction. The trap handler for step typically
displays information for the user, and waits for a
command. Or, the trap handler could instead check for a
termination condition (such as a register value or the
number of executions of this particular location),
continuing execution of the application until the condition
is met.

Step is processed and prioritized similarly to the other
exception traps. This means that all traps execute before
the step trap. The result is that step cannot directly single-
step through the program code of other trap handlers. The
instruction step is normally considered to be below the

Table 33 Code example: Memory Fault Service
Routine

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

24

operating-system level, thus operating-system functions
such as stack-page traps must execute without its
intervention.

Higher-priority trap handlers can be single-stepped by
re-prioritizing them in software. Rather than directly
executing a higher-priority trap handler from the
corresponding executable trap vector, the vector would
branch to code to rearrange the return addresses on the
return stack to change the resulting execution sequence of
the trap handlers. Various housekeeping tasks must also be
performed, and the various handlers must ensure that the
stack memory area boundaries are not violated by the re-
prioritized handlers.

Register mode

 mode contains a variety of bits that indicate the status
and execution options of the CPU. Except as noted, all
bits are writable. The register is shown in Figure 9.

mflt_write

After a memory-fault exception is signaled, indicates
that the fault occurred due to a memory write.

guard_bit

The most-significant bit of a 3-bit extension below
the least-significant bit of s0 (s1, if fp_precision is set)
that is used to aid in rounding floating-point numbers.

round_bit

The middle bit of a 3-bit extension below the least-
significant bit of s0 (s1, if fp_precision is set) that is used
to aid in rounding floating-point numbers.

sticky_bit

The least-significant bit of a 3-bit extension below the
least-significant bit of s0 (s1, if fp_precision is set) that is
used to aid in rounding floating-point numbers. Once set
due to shifting or writing the bit directly, the bit stays set
even though zero bits are shifted right through it, until it is
explicitly cleared or written to zero.

mflt_trap_en

If set, enables memory-fault traps.

mflt_exc_sig
Set if a memory fault is detected.

ls_boundary

Set if ls_ovf_exc_sig or ls_unf_exc_sig becomes set
as the result of a stack spill or refill. Cleared when the
address in la, as the result of a stack spill or refill, has
entered the middle region of a 1024-byte memory page,
and when la is written. Used by the local-register stack
trap logic to prevent unnecessary stack overflow and
underflow traps when repeated local-register stack spills
and refills occur near a 1024-byte memory page boundary.
Not writable.
ls_unf_trap_en

If set, enables a local-register stack underflow trap to
occur after a local-register stack underflow exception is
signaled.

ls_unf_exc_sig

Set if a local-register stack refill occurs, ls_boundary
is clear, and the accessed memory address is in the last
thirty-two cells of a 1024-byte memory page.

ls_ovf_trap_en

If set, enables a local-register stack overflow trap to
occur after a local-register stack overflow exception is
signaled.

ls_ovf_exc_sig

Set if a local-register stack spill occurs, ls_boundary
is clear, and the accessed memory address is in the first
thirty-two cells of a 1024-byte memory page.

os_boundary

Set if os_ovf_exc_sig or os_unf_exc_sig becomes set
as the result of a stack spill or refill. Cleared when the
address in sa, as the result of a stack spill or refill, has
entered the middle region of a 1024-byte memory page,
and when sa is written. Used by the operand stack trap
logic to prevent unnecessary stack overflow and
underflow traps when repeated operand stack spills and
refills occur near a 1024-byte memory page boundary.
Not writable.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

25

os_unf_trap_en
If set, enables an operand stack underflow trap to

occur after an operand stack underflow exception is
signaled.

Figure 9 Register Mode

os_unf_exc_sig
Set if an operand stack refill occurs, os_boundary is

clear, and the accessed memory address is in the last
thirty-two cells of a 1024-byte memory page.

31 0 123 4 56 7 8 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

Floating Point

fp_precision
fp_round_mode fp_exp_trap_en fp_exp_exc_sig fp_unf_trap_en fp_unf_exc_sig fp_ovf_trap_en fp_ovf_exc_sig fp_nrm_trap_en fp_nrm_exc_sig fp_rnd_trap_en fp_rnd_exc_sig

sticky_bit
round_bit
guard_bit

underflow exception signal
underflow trap enable

exponent exception signal
exponent trap enable

rounding mode (0=nearest,
1= !infinity, 2=+infinity, 3=zero)

precision (0=single, 1=double)

overflow trap enable overflow exception signal
normalize trap enable

normalize exception signal round trap enable round exception signal
rounding guard bit
rounding round bit
rounding sticky bit

Mnemonic Description

os_ovf_exc_sig os_ovf_trap_en os_unf_exc_sig
os_unf_trap_en
os_boundary Mnemonic

overflow exception signal overflow trap enable
underflow exception signal
underflow trap enable boundary area entered Description

Operand Stack ls_ovf_exc_sig
ls_ovf_trap_en ls_unf_exc_sig
ls_unf_trap_en
ls_boundary Mnemonic

overflow exception signal overflow trap enable underflow exception signal underflow trap enable boundary area entered Description Local-Register Stack

mflt_trap_en
Mnemonic

exception signal
Description Memory Fault

mflt_exc_sig
mflt_write trap enable

fault was a write

Mnemonic Description
carry
power_fail
interrupt_en global interrupt enable

power fail occurred
carry flag

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

26

os_ovf_trap_en

If set, enables an operand stack overflow trap to occur
after an operand stack overflow exception is signaled.

os_ovf_exc_sig
Set if an operand stack spill occurs, os_boundary is

clear, and the accessed memory address is in the first
thirty-two cells of a 1024-byte memory page.

carry

Contains the carry bit from the accumulator. Saving
and restoring mode can be used to save and restore carry.

power_fail

Set during power-up to indicate that a power failure
has occurred. Cleared by any write to mode. Otherwise,
not writable.

interrupt_en

If set, interrupts are globally enabled. Set by the
instruction ei, cleared by di.

fp_rnd_exc_sig

If set, a previous execution of rnd caused a change in
the least significant bit of s0 (s1, if fp_precision is set).

fp_rnd_trap_en

If set, enables a floating-point round trap to occur
after a floating-point round exception is signaled.

fp_nrm_exc_sig

If set, one or more of the guard_bit, round_bit and
sticky_bit were set after a previous execution of denorm,
norml or normr.

fp_nrm_trap_en

If set, enables a floating-point normalize trap to occur
after a floating-point normalize exception is signaled.

fp_ovf_exc_sig

If set, a previous execution of normr, addexp or
subexp caused the exponent field to increase to or beyond
all ones.

fp_ovf_trap_en

If set, enables a floating-point overflow trap to occur
after a floating-point overflow exception is signaled.

fp_unf_exc_sig
If set, a previous execution of norml, addexp or

subexp caused the exponent field to decrease to or beyond
all zeros.

fp_unf_trap_en

If set, enables a floating-point underflow trap to
occur after a floating-point underflow exception is
signaled.

fp_exp_exc_sig

If set, a previous execution of testexp detected an
exponent field containing all ones or all zeros.

fp_exp_trap_en

If set, enables a floating-point exponent trap to occur
after a floating-point exponent exception is signaled.

fp_round_mode

Contains the type of rounding to be performed by the
CPU instruction rnd.

fp_precision

If clear, the floating-point instructions operate on
stack values in IEEE single-precision (32-bit) format. If
set, the floating-point instructions operate on stack values
in IEEE double-precision (64-bit) format.

CPU Reset

 The CPU begins executing at address 0x80000008
with the mode register set to all zeros.

Interrupts

 The CPU contains an on-chip prioritized interrupt
controller that supports up to eight different interrupt
levels. Interrupts can be received through the bit inputs or
can be forced in software by writing to ioin. For complete
details of interrupts and their servicing, see Interrupt
Controller.

Bit Inputs

 The CPU contains eight general-purpose bit inputs
that are shared with the INTC as requests for those
services. The bits are taken from _I _N[7:0]. See Bit Inputs.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

27

Bit Outputs

 The CPU contains eight general-purpose bit outputs
which can be written by the CPU. The bits are output on
O_U_T_[7:0]. See Bit Outputs.

Table 34 Instructions that Hold-off Pre-fetch

 The CPU issues bus requests ordered to optimize
execution. To keep executing instructions as much as
possible, the next group of instructions are fetched while
the current group executes. This is referred to as
instruction pre-fetch. Instruction pre-fetch begins as soon
as an instruction group begins to execute unless it is held
off. Pre-fetch is held off if the executing instruction group
contains one of the instruction in Table 34. ld and st only
hold-off pre-fetch if they occur as the first instruction in
the executing instruction group. Knowing which
instruction hold-off pre-fetch is useful when programming
bus configuration information.

Posted-Write

 The CPU supports a one-level posted write. This
allows CPU execution to continue unimpeded after the
write is posted. To maintain memory coherency, posted
writes have the highest priority of all CPU bus requests.
This guarantees that memory reads following a posted
write will always retrieve the most up-to-date data.

On-Chip Resources

 The non-CPU hardware features of the CPU are
generally accessed by the CPU through a set of 8
registers located in their own address space. Using a
separate address space simplifies implementation,
preserves opcodes, and prevents cluttering the normal
memory address space with peripherals. Collectively
known as the On-Chip Resources, these registers allow
access to the bit inputs, bit outputs, INTC and system
configuration. These registers and their functions are
referenced throughout this manual and are described in
detail in On-Chip Resource Registers.

Instruction Reference

 As a stack-based CPU architecture, the IGNITE
PROCESSOR CPU instructions have documentation
requirements similar to other stack-based systems, such as
the Java Virtual Machine (JVM) and American National
Standard Forth (ANS Forth). Not surprisingly, many of
the JVM and ANS Forth operations are instructions on the
 IGNITE CPU. As a result, the JVM and ANS Forth stack
notation used for language documentation is useful for
describing IGNITE CPU instructions. The basic
notation adapted for the IGNITE CPU is:

(input_operands -- output_operands)
(L: input_operands -- output_operands)

where “--” indicates the execution of the instruction.
“Input_operands” and “output_operands” are lists of
values on the operand stack (the default) or local register
stack (preceded by “L:”). These are similar, though not
always identical, to the source and destination operands
that can be represented within instruction mnemonics. The
value held in the top-of-stack register (s0 or r0) is always
on the right of the operand list with the values held in the
higher ordinal registers appearing to the left (e.g., s2 s1
s0). The only items in the operand lists are those that are
pertinent to the instruction; other values may exist under
these on the stacks. All of the input_operands are
considered to be popped off the stack, the operation
performed, and the output_operands pushed on the stack.
For example, a notational expression of:

n1 n2 -- n3
represents two input operands, n1 and n2, and one output
operand, n3. For the instruction add, n1 (taken from s1) is
added to n2 (taken from s0), and the result is n3 (left in
s0). If the name of a value on the left of either diagram is
the same as the name of a value on the right, then the
value was required, but unchanged. The name represents
the operand type. Numeric suffixes are added to indicate
different or changed operands of the same type. The
values may be bytes, integers, floating-point numbers,
addresses, or any other type of value that can be placed in
a single 32-bit cell.

addr address
byte character or byte (upper 24 bits zero)
n integer or 32 arbitrary bits
other text integer or 32 arbitrary bits

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

28

ANS Forth defines other operand types and operands
that occupy more than one stack cell; those are not used
here.

Note that typically all stack action is described by
the notation and is not explicitly described in the text. If
there are multiple possible outcomes then the outcome
options are on separate lines and are to be considered as
individual cases. If other registers or memory variables
are modified, then that effect is documented in the text.

Also on the stack diagram line is an indication of
the effect on carry, if any, as well as the opcode and
execution time at the right margin.

A timing with an “M” indicates the specified
number of bus requests and bus transactions (memory
cycles) for the instruction to complete. The value used
for “M” includes both the bus request and bus
transaction times and depends on the memory interface
implemented.

Timings do not include implied memory cycles
such as stack spills and refills required to maintain the
state of the stack caches. Any operation that pushes or
pops a stack, or references a local register could cause a

memory cycle. Operations that wait on the completion
of instruction pre-fetch are labeled “Mprefetch.” These
are distinct in that pre-fetch occurs in parallel with
execution so the wait time is probably not a full
memory cycle.

ANS Forth Word Equivalents
 Those IGNITE CPU instructions that are exact
equivalents of ANS Forth words are indicated in the
body text for the instruction. Many additional ANS
Forth words simply require a short instruction sequence,
but these are not indicated.

Java Byte Code Equivalents
 Those IGNITE CPU instructions that are exact
equivalents of Java byte codes are indicated in the body
text for the IGNITE CPU instruction. Many additional
Java byte codes simply require a short instruction
sequence, though the most complex byte codes require
a subroutine call. For detailed information contact
PTSC.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

29

add

add (n1 n2 -- n3) carry± 1100 0000
 0xC0
 1 CPU-clock

Add n1 and n2 giving the sum n3. carry is set if there is a carry out of bit 31 of the sum and cleared otherwise.

Equivalent to Java byte code iadd.

Equivalent to ANS Forth word +.

add pc (n1 -- n2) 1011 1011
 0xBB
 1 CPU-clock

Add the value of pc (the byte-aligned address of the add pc opcode) to n1 giving the sum n2. carry is set if there is a
carry out of bit 31 of the sum and cleared otherwise.

adda
Add Address

adda (n1 n2 -- n3) 1110 1000
 0xE8
 1 CPU-clock

Add n1 and n2 giving the sum n3. carry is unaffected.

addc
Add with Carry

addc (n1 n2 -- n3) carry± 1100 0010
 0xC2
 1 CPU-clock

Add n1 and n2 and carry giving the sum n3. carry is set if there is a carry out of bit 31 of the sum, otherwise carry is
cleared.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

30

addexp
Add Exponents

addexp (n1 n2 -- n3 n4 n5) 1101 0010
 0xD2
 2 CPU-clocks

(L: -- addr) only when trap processed 4+M CPU-clocks
Perform the following:
 Exponent_Field(n5) = Exponent_Field(n1) - BIAS + Exponent_Field(n2)
 Sign_Bit(n5) = Sign_Bit(n1) XOR Sign_Bit(n2)
BIAS is 127 (0x3F800000 in position) for single precision and 1023 (0x3FF00000 in position) for double precision,
as selected by fp_precision.

CoCPUte as described above. Clear the exponent field bits and sign bit and set the hidden bit of n1 and n2, giving n3
and n4, respectively. n5 is the result of the coCPUtation. After completion, if the exponent-field calculation result
equaled or exceeded the maximum value of the exponent field (exponent field result � 255 for single, exponent field
result � 2047 for double) an overflow exception is signaled. If the exponent-field calculation result is less than or
equal to zero an underflow exception is signaled. When an exception is signaled, the exponent field of n5 contains as
many low-order bits of the coCPUted exponent as it will hold.

and
Bitwise AND

and (n1 n2 -- n3) carry clear 1110 0001
 0xE1
 1 CPU-clock

Perform a bitwise AND of n1 and n2 giving the result n3.

Equivalent to Java byte code iand.

Equivalent to the ANS Forth word AND.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

31

bkpt
Breakpoint

bkpt (--) 0011 1100

(L: -- addr) 0x3C
 1+M CPU-clocks

Perform a call subroutine to the breakpoint trap location, 0x134. addr is the address of the bkpt instruction. Typically
the breakpoint service routine replaces the bkpt opcode at addr with the original opcode, performs whatever
debugging function desired, and ret to addr.

Equivalent to Java byte code breakpoint.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

32

b

Branch if Condition

br offset (--) 0000 0xxx
Branch Unconditionally 0x0?
 M CPU-clocks

Transfer execution to offset cells from the beginning of the current instruction group.

The instruction adds the two's-complement cell offset encoded within and following the br opcode to pc, and
transfers execution to the resulting cell-aligned address.

Equivalent to Java byte codes goto, goto_w.

Equivalent to the run-time for the ANS Forth words AGAIN, AHEAD, ELSE.

br [] (addr --) 0100 1011
Branch Indirect 0x4B
 M CPU-clocks

Replace the value in pc with addr to transfer execution to addr. Note that addr is an absolute byte-aligned address
and not an offset.

bz offset (n --) 0001 0xxx
Branch if Zero 0x1?
 M CPU-clocks

If n is zero, transfer execution to offset cells from the beginning of the instruction group; otherwise, continue
execution at the next instruction group.

If n is zero the instruction adds the two's-complement cell offset encoded within and following the bz opcode to pc,
and transfers execution to the resulting cell-aligned address. If n is non-zero execution continues with the next
instruction group.

Equivalent to Java byte codes ifeq, ifnull.

Equivalent to the run-time for the ANS Forth words IF, UNTIL, WHILE.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

33

dbr offset (--) 0001 1xxx
Decrement CT and Branch 0x1?
 M CPU-clocks

Decrement ct by one. If ct is non-zero, transfer execution to offset cells from the beginning of the current instruction
group; otherwise, continue execution with the next instruction group.

The instruction decrements ct by one. If the resulting ct is non-zero the instruction then adds the two's-complement
cell offset encoded within and following the dbr opcode to pc, and transfers execution to the resulting cell-aligned
address. If the resulting ct is zero execution continues with the next instruction group.

cache
Fill/Empty Stack Cache

The cache instructions are used to optimize program execution, or to make program execution more deterministic. Stack
cache spills and refills can be caused to occur at preferential times, and to occur in bursts to optimize memory access.
Executing the instruction with both n and n-14 (n>0) ensures that an exact number of items are in the stack cache.
Pushing dummy values onto the stack (one value for the local-register stack, three values for the operand stack) and then
executing the instruction with n = -14 causes all previously held data to be spilled to memory. Note that if stack-page
exceptions are enabled, a trap might occur and change the state of the stacks from that set by the cache instruction. See
Stack-Page Exceptions on page ?.

lcache (n --) 0100 1101
 0x4D
 1 or (1M to 14M) CPU-clocks

If n > 0, ensure that at least n cells can be removed from the local-register stack without causing local-register stack
cache refills. Cells are refilled from memory into the cache if required. (1 � n � 14).

If n < 0 (two's complement), ensure that at least �n� cells can be added to the local-register stack without causing
local-register stack cache spills. Cells are spilled from the stack cache to memory if required. (-14 � n � -1).

If n = 0 the local-register stack cache is unchanged.

scache (n -- n) 0100 0101
 0x45
 1 or (1M to 14M) CPU-clocks

If n > 0, ensure that at least n cells can be removed from the operand stack without causing operand stack cache
refills. Cells are refilled from memory into the cache if required. (1 � n � 14).

If n < 0 (two's complement), ensure that at least �n� cells can be added to the operand stack without causing
operand stack cache spills. Cells are spilled from the stack cache to memory if required. (-14 � n � -1)

If n = 0 the operand stack cache is unchanged.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

34

call
Call Subroutine

call offset (--) 0000 1xxx

(L: -- addr) 0x0?
Call Subroutine 1+M CPU-clocks

Transfer execution to offset cells from the beginning of the current instruction group. addr is the cell-aligned address
of the next instruction group.

The instruction pushes addr on the local-register stack and then adds the two's-complement cell offset encoded with-
in and following the call opcode to pc, and transfers execution to the resulting cell-aligned address. The offset is in
the same form and follows the same rules as those for branches.

call [] (addr1 --) 0100 1110

(L: -- addr2) 0x4E
Call Subroutine Indirect 1+M CPU-clocks

Replace the value in pc with addr1 to transfer execution there. addr2 is the byte-aligned address of the next
instruction following call []. Note that addr1 is an absolute address and not an offset.

cmp
Compare

cmp (n1 n2 -- n1 n2) carry± 1100 1011
 0xCB
 1 CPU-clock

Compare n2 and n1 as signed values. Set carry if n1 < n2, otherwise clear carry.

copyb
Copy Byte Across Cell

copyb (n1 -- n2) 1101 0000
 0xD0
 1 CPU-clock

n2 is the result of copying the lowest byte of n1 into each of the higher byte positions. For example, 0x12345678
becomes 0x78787878.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

35

dbr See _b_.

dec
Decrement

dec #1 (n1 -- n2) 1100 1111
 0xCF
 1 CPU-clock

Subtract one from n1 leaving the result n2.

Equivalent to ANS Forth word 1-.

dec #4 (n1 -- n2) 1100 1101
 0xCD
 1 CPU-clock

Subtract four from n1 leaving the result n2.

dec ct, #1 (--) 1100 0001
 0xC1
 1 CPU-clock

Subtract one from ct.

denorm
Denormalize

denorm (n1 -- n2) if single precision 1100 0101

(n1 n2 -- n3 n4) if double precision 0xC5
 1 to 13 CPU-clocks

(L: -- addr) only when trap processed
 3+M to 15+M CPU-clocks

Shift n1 (or n2n1 if double) right by the bit count in the exponent field of ct. Bits shift out of the right into the GRS
extension. If any bit in the GRS extension is set, a normalize exception is signaled. The location of the exponent field
depends on fp_precision. The exponent field of ct is decremented to zero.

Shifting is performed by bytes or bits to minimize CPU-clock cycles required. If the count in the exponent bits of ct
is larger than the width in bits of the significand field + 3 (for the guard_bit, round_bit and the hidden bit), the
sticky_bit is set and the other bits are cleared, and execution requires one CPU-clock cycle.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

36

depth
Depth of Stack

 Note that if stack-page exceptions are enabled, a trap might occur and change the state of the stacks from that returned.
See Stack-Page Exceptions on page ?.

ldepth (-- n) 1001 1011
 0x9B
 1 CPU-clock

n is exactly the number of cells that can be removed from the local-register stack without causing a local-register
stack cache refill. (0 � n � 14).

sdepth (-- n) 1001 1111
 0x9F
 1 CPU-clock

n is exactly the number of cells, before n was pushed, that could be removed from the operand stack without causing
an operand stack cache refill. (0 � n � 14). If n = 14, then an operand stack cache spill occurred when n was pushed
and only 13 cells remain, excluding n, that can be removed from the operand stack without causing an operand stack
cache refill.

di
Disable Interrupts

di (--) 1011 0111
 0xB7
 1 CPU-clock

Globally disable interrupts, clearing interrupt_en. The ioie bits are not changed.

divu
Divide Unsigned

divu (n1 n2 -- n3 n4) 1101 1110
 0xDE
 32 CPU-clocks

Divide the double value n2n1 by the value in g0 giving the quotient n3 and remainder n4. All values are unsigned. If
n2 is greater than or equal to g0 then the quotient will overflow. If g0 is zero then n3 equals n1 and n4 equals n2.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

37

ei
Enable Interrupts

ei (--) 1011 0110
 0xB6
 1 CPU-clock

Globally enable interrupts, setting interrupt_en. The ioie bits are not changed.

eqz
Equal Zero

eqz (n1 -- n2) 1110 0101
 0xE5
 1 CPU-clock

n2 is the logical inverse of n1. If n1 is equal to zero n2 is -1. If n1 is non-zero n2 is zero.

Equivalent to ANS Forth word 0=.

expdif
Exponent Difference

expdif (n1 n2 -- n3 n4) 1100 0100
 0xC4
 1 CPU-clock

Clear the upper half of ct. Subtract the exponent field of n2 from the exponent field in n1 placing the result in the
exponent-field bits of ct. Clear the exponent-field bits and sign bit and set the hidden bit of n1 and n2 giving n3 and
n4, respectively. The locations of the exponent field and hidden bit depend on fp_precision.

extexp
Extract Exponent

extexp (n1 -- n2) 1101 1011
 0xDB
 1 CPU-clock

Clear the significand bits of n1 leaving the exponent-field bits and sign bit unchanged, giving n2. The locations of
the exponent field and significand field depend on fp_precision.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

38

extsig
Extract Significand

extsig (n1 -- n2) 1101 1100
 0xDC
 1 CPU-clock

Clear the exponent and sign bits of n1 leaving the significand-field bits unchanged. Then set the hidden bit of n1,
giving n2. The locations of the exponent field and significand field depend on fp_precision.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

39

frame
Allocate On-Chip Stack Frame

lframe (n --) 1011 1110

(L: -- xn�x1) (n > 0) 0xBE
 1 or (1M to 15M) CPU-clocks

(L: xn�x1 --) (n < 0)
 1 or (1 to 15) CPU-clocks

(L: --) (n = 0) 1 CPU-clock
If n > 0, allocate n uninitialized cells, xn�x1, at the top of the local-register stack cache. This causes r0 to move to rn,
r1 to move to r(n+1), ri to move to r(n+i), etc. Those local registers for which (n+i) > 14 are written from the local-
register stack cache to memory. (1 � n � 15).

If n < 0, discard �n� cells, xn�x1, from the top of the local-register stack cache. This causes r0 through r(�n�-1) to
be discarded, r�n� to become r0, r(�n�+1) to become r1, etc. (-15 � n � -1). Each cell discarded that is not in the
stack cache requires one CPU-clock cycle.

If n = 0, no cells are allocated or discarded.

sframe 1011 1111

 0xBF
(m n -- xn�x1 m n) (n > 0)

 1 or (1M to 15M) CPU-clocks
(xn�x1 m n -- m n) (n < 0)

 1 or (1 to 15) CPU-clocks
(n -- n) (n = 0) 1 CPU-clock

If n > 0, allocate n uninitialized cells, xn�x1, in the operand stack cache after s0 and s1. This causes s2 to move to
s(n+2), s3 to move to s(n+3), si to move to s(n+i), etc. Those stack cells for which (n+i) > 16 are written from the
operand stack cache to memory. (1 � n � 15).

If n < 0, discard �n� cells, xn�x1, from within the operand stack cache after s0 and s1. This causes s2 through
s(�n�+1) to be discarded, s(�n�+2) to become s2, s(�n�+3) to become s3, etc. (-15 � n � -1). Each cell
discarded that is not in the stack cache requires one CPU-clock cycle.

If n = 0, no cells are allocated or discarded.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

40

iand
Bitwise Invert then AND

iand (n1 n2 -- n3) clear carry 1110 1001
 0xE9
 1 CPU-clock

Clear the bits in n1 that are set in n2 leaving the result n3.

inc
Increment

inc #1 (n1 -- n2) 1100 1110
 0xCE
 1 CPU-clock

Add one to n1 giving the sum n2.

Equivalent to ANS Forth word 1+.

inc #4 (n1 -- n2) 1100 1100
 0xCC
 1 CPU-clock

Add four to n1 giving the sum n2.

lcache See _cache.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

41

ld
Load Indirect from Memory

ld [--r0] (-- n) 0100 0100
 0x44
 1+M CPU-clocks

Decrement the address in r0 by four. n is the value from the cell in memory at the new address in r0. The two least
significant bits of the address are ignored and treated as zero.

ld [--x] (-- n) 0100 1010
 0x4A
 1+M CPU-clocks

Decrement the address in x by four. n is the value from the cell in memory at the new address in x. The two least
significant bits of the address are ignored and treated as zero.

ld [r0++] (-- n) 0100 0110
 0x46
 M CPU-clocks

n is the value from the cell in memory at the address in r0. Increment r0 by four. The two least significant bits of the
address are ignored and treated as zero.

ld [r0] (-- n) 0100 0010
 0x42
 M CPU-clocks

n is the value from the cell in memory at the address in r0. The two least significant bits of the address are ignored
and treated as zero.

ld [x++] (-- n) 0100 1001
 0x49
 M CPU-clocks

n is the value from the cell in memory at the address in x. Increment x by four. The two least significant bits of the
address are ignored and treated as zero.

ld [x] (-- n) 0100 0001
 0x41
 M CPU-clocks

n is the value from the cell in memory at the address in x. The two least significant bits of the address are ignored
and treated as zero.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

42

ld [] (addr -- n) 0100 0000
 0x40
 M CPU-clocks

n is the value from the cell in memory at the address addr. The two least significant bits of the address are ignored
and treated as zero.

Equivalent to ANS Forth words @, F@, SF@.

ld.b [] (addr -- byte) 0100 1000
 0x48
 M CPU-clocks

byte is the value from the byte in memory at the address addr.

ld.w [] (addr -- word) 0100 1100
 0x4C
 M CPU_clocks

word is the 16-bit value from the word in memory at address addr. The least significant bit of the address is ignored
and treated as zero.

Equivalent to ANS Forth word C@.

ldo
Load Indirect from On-Chip Resource

ldo [] (addr -- n) 1001 0110
 0x96
 1 CPU-clock

n is the value from the on-chip resource at addr. For valid values of addr, see On-Chip Resource Registers, page 89.

ldo.i [] (bit_addr -- n) 1001 0111
 0x97
 1 CPU-clock

n is all ones (-1) if the bit at the on-chip resource address bit_addr is one, otherwise n is zero. For valid values of
bit_addr, see On-Chip Resource Registers, page 89.

ldepth See _depth.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

43

lframe See _frame.

mloop_
Micro Loop on Condition

An mloop re-executes the current instruction group, beginning with the first instruction in the group, up to the mloop_
instruction, until a specified condition is not met or until ct is decremented to zero. When either termination condition
occurs, execution continues with the instruction following the mloop_ opcode.

mloop (--) 0011 1000
Micro Loop Unconditionally 0x38
 1 CPU-clock

Decrement ct by one. If ct is non-zero transfer execution to the beginning of the current instruction group. If ct is
zero continue execution with the instruction following mloop.

mloopc (--) 0011 1001
Micro Loop if Carry 0x39
 1 CPU-clock

Decrement ct by one. If ct is non-zero and carry is set transfer execution to the beginning of the current instruction
group. If ct is zero or carry is clear continue execution with the instruction following mloopc.

mloopn
mloopnp (n -- n) 0011 1010
Micro Loop if Negative/Not Positive 0x3A
 1 CPU-clock

Decrement ct by one. If ct is non-zero and n is negative (neither positive nor zero) transfer execution to the
beginning of the current instruction group. If ct is zero or n is not negative (either positive or zero) continue
execution with the instruction following mloopn or mloopnp.

mloopnc (--) 0011 1101
Micro Loop if Not Carry 0x3D
 1 CPU-clock

Decrement ct by one. If ct is non-zero and carry is clear transfer execution to the beginning of the current instruction
group. If ct is zero or carry is set continue execution with the instruction following mloopnc.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

44

mloopnn
mloopp (n -- n) 0011 1110
Micro Loop if Not Negative/Positive 0x3E
 1 CPU-clock

Decrement ct by one. If ct is non-zero and n is not negative (either positive or zero) transfer execution to the
beginning of the current instruction group. If ct is zero or n is negative (neither positive nor zero) continue execution
with the instruction following mloopnn or mloopp.

mloopnz (n -- n) 0011 1111
Micro Loop if Not Zero 0x3F
 1 CPU-clock

Decrement ct by one. If ct is non-zero and n is not zero transfer execution to the beginning of the current instruction
group. If ct is zero or n is zero continue execution with the instruction following mloopnz.

mloopz (n -- n) 0011 1011
Micro Loop if Zero 0x3B
 1 CPU-clock

Decrement ct by one. If ct is non-zero and n is zero transfer execution to the beginning of the current instruction
group. If ct is zero or n is not zero continue execution with the instruction following mloopz.

mulfs
Multiply Fast Signed

mulfs (n1 n2 -- n3 n4) 1101 0110
 0xD6
 2 to 32 CPU-clocks

Multiply the bit-order-reversed value n1 by the value in g0 leaving the result n4. n2 is usually zero and n3 is garbage
(see below). The number of significant bits in n1 is indicated by the value in ct. All values are single-cell size and
signed. ct is decremented to zero.

The program must supply n1 in bit-order-reversed form (e.g., the binary value for decimal 13 is 01101 and bit-order
reversed is 10110; note that the original high-order bit is zero as a sign bit and must be included.) The program must
also load ct with the bit count and push a zero for n2. For the example number above, the count would be 5. n3 is
typically discarded.

n2 could be non-zero but its use in this form is questionable. The effect of n2 on the result is that the value of n2
shifted left by the bit count value in ct is added to the result, n4. n3 contains the low cell of the value remaining after
n2n1 is shifted right by the number of bits in ct. Instruction execution time is limited to 65 CPU-clock cycles by the
instruction expiration counter.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

45

muls
Multiply Signed

muls (n1 n2 -- n3 n4) 1101 0101
 0xD5
 32 CPU-clocks

Multiply n1 by the value in g0 and add n2, leaving the double result n4n3. All values are signed.

mulu
Multiply Unsigned

mulu (n1 n2 -- n3 n4) 1101 0111
 0xD7
 32 CPU-clocks

Multiply n1 by the value in g0 and add n2, leaving the double result n4n3. All values are unsigned.

mxm
Maximum

mxm (n1 n2 -- n1 n2) carry set 1101 1111

 or (n1 n2 -- n2 n1) carry clear 0xDF
 2 CPU-clocks

Compare n2 and n1 as signed values. Set carry if n1 < n2, otherwise clear carry. Bring the larger of n1 and n2 to the
top of stack. That is, if the resulting carry is set then n2 is greater than n1 and n2 remains on top. If the resulting
carry is clear then n2 is less than or equal to n1 and n1 is exchanged with n2.

neg
Two's-Complement Negation

neg (n1 -- n2) 1100 1001
 0xC9
 1 CPU-clock

n2 is the two's-complement negation of n1.

Equivalent to Java byte code ineg.

Equivalent to ANS Forth word NEGATE.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

46

nop
No Operation

nop (--) 1110 1010
 0xEA
 1 CPU-clock

Do nothing.

Equivalent to Java byte code nop.

norml
Normalize Left

norml (n1 -- n2) if single precision 1100 0111

(n1 n2 -- n3 n4) if double precision 0xC7
 1 to 13 CPU-clocks

(L: -- addr) only when trap processed
 3+M to 15+M CPU-clocks

(L: -- addr1 addr2) only when both traps processed
 5+2M to 17+2M CPU-clocks

While the hidden bit and the seven bits to the right of it in n1 (n2 if double) are zero, repeat the following:
 Shift n1 (or n2n1 if double) left by eight bits and decrement the exponent field in ct by eight.
Then, while the hidden bit of n1 (n2 if double) is zero, repeat the following:
 Shift n1 (or n2n1 if double) left by one bit and decrement the exponent field in ct by one.

In both steps, bits shifted into bit zero of n1 come from the GRS extension.

When the operation is complete, if shifting was required and the decremented field in ct reached or passed all zero
bits during the processing, an underflow exception is signaled. If no shifting is required an underflow exception is
not signaled. Then, if any bit in the GRS extension is set, a normalize exception is signaled. The location of the
exponent field depends on fp_precision. If both traps are processed, the underflow trap has higher priority.
Instruction execution time is limited to 65 CPU-clock cycles by the instruction expiration counter.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

47

normr
Normalize Right

normr (n1 -- n2) if single precision 1100 0110

(n1 n2 -- n3 n4) if double precision 0xC6
 1 to 11 CPU-clocks

(L: -- addr) only when trap processed
 3+M to 13+M CPU-clocks

(L: -- addr1 addr2) only when both traps processed
 5+2M to 15+2M CPU-clocks

While any bit except the first bit (the hidden bit) in the exponent field is non-zero, repeat the following:
 Shift n1 (or n2n1 if double) right by one bit and increment the exponent field in ct by one. Bits shifted out of bit
zero of n1 shift into the GRS extension bits.

When the operation is complete, if shifting was required and the incremented field in ct reached or passed all one
bits during the processing, an overflow exception is signaled. If no shifting is required an overflow exception is not
signaled. Then, if the GRS extension is set, a normalization exception is signaled. The locations of the exponent field
and hidden bit depend on fp_precision. If both traps are processed, the overflow trap has higher priority.

notc
Complement Carry

notc (--) carry inverted 1101 1101
 0xDD
 1 CPU-clock

Invert the state of carry.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

48

or
Bitwise OR

or (n1 n2 -- n3) carry clear 1110 0000
 0xE0
 1 CPU-clock

Perform a bitwise OR on n1 and n2 giving the result n3.

Equivalent to Java byte code ior.

Equivalent to ANS Forth word OR.

pop

pop (n --) 1011 0011
 0xB3
 1 CPU-clock

Discard n.

Equivalent to Java byte codes pop, l2i.
Equivalent when executed twice to Java byte code pop2.

Equivalent to ANS Forth word D>S, DROP, FDROP.
Equivalent when executed twice to ANS Forth word 2DROP.

pop ct (n --) 1011 0100
 0xB4
 1 CPU-clock

Replace the value in ct with n.

pop gi (n --) 0101 xxxx
 0x5?
 1 CPU-clock

Replace the value in gi (global register i, i.e., g0–g15) with n.

pop la (addr --) 1011 1101

(L: �jn�j1 --) 0xBD
 1+M CPU-clocks

Replace the value in la with cell-aligned address addr. The contents of the local-register stack cache, �jn�j1, are
discarded. The two least-significant bits of la are cleared. The bit ls_boundary is cleared. A stack refill is performed
at addr+4 to initialize r0.

pop lstack (n --) 1011 1010

(L: -- n) 0xBA

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

49

 1 CPU-clock
Remove n from the operand stack and push it onto the local-register stack (into r0). The previous contents of r0 are
placed in r1, the previous contents of r1 are placed in r2, and so on.

Equivalent to ANS Forth word >R.
Equivalent when executed twice to ANS Forth word 2>R.

pop mode (n --) 1011 1001
 0xB9
 1 CPU-clock

Replace the value in mode with n and clear power_fail. The mode bits power_fail, ls_boundary and os_boundary are
not writeable.

pop ri (n --) 1010 xxxx
 0xA?
 1 CPU-clock

Replace the value in ri (local register i, i.e., r0–r14) with n.

If ri is in the local-register stack cache (i � ldepth) the value in ri is replaced with n. If ri is not currently in the local-
register stack cache (i > ldepth), cells starting at r(ldepth+1) are read from memory sequentially to fill the cache until
ri is reached. ri is then replaced with the value n.

Equivalent to Java byte codes astore_0, astore_1, astore_2, astore_3, fstore_0, fstore_1, fstore_2, fstore_3, istore_0,
istore_1, istore_2, istore_3.
Equivalent when executed twice to Java byte codes dstore_0, dstore_1, dstore_2, dstore_3, lstore_0, lstore_1,
lstore_2, lstore_3.
Equivalent for indexes up to fourteen (almost all actual cases) to Java byte codes astore (vindex), fstore (vindex),
istore (vindex).
Equivalent when executed twice for indexes up to thirteen (almost all actual cases) to Java byte codes dstore
(vindex), lstore (vindex).

pop sa (�jn�j1 m1 m2 addr -- m1 m2) 1011 1100
 0xBC
 1+M CPU-clocks

Replace the value in sa with cell-aligned address addr. The contents of the operand stack cache, �jn�j1, are
discarded. The two least-significant bits of sa are cleared. The bit os_boundary is cleared. A stack refill is performed
at addr+4 to initialize s2.

pop x (n --) 1011 1000
 0xB8
 1 CPU-clock

Replace the value in x with n.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

50

push

push (n -- n n) 1001 0010
 0x92
 1 CPU-clock

Duplicate n.

Equivalent to Java byte code dup.

push ct (-- n) 1001 0100
 0x94
 1 CPU-clock

n is the value in ct.

push gi (-- n) 0111 xxxx
 0x7?
 1 CPU-clock

n is the value in gi (global register i, i.e., g0–g15).

push la (-- addr) 1001 1101
 0x9D
 1 CPU-clock

addr is the value in la. Note that if stack-page exceptions are enabled, a trap might occur and change the state of the
stacks from that returned. See Stack-Page Exceptions on page ?.

push lstack (-- n) 1001 1010
 0x9A

(L: n --) 1 CPU-clock
Pop n from the local-register stack (from r0) and push it onto the operand stack. The previous contents of r1 are
placed in r0, the previous contents of r2 are placed in r1, and so on.

Equivalent to ANS Forth word R>.
Equivalent when executed twice to ANS Forth word 2R>.

push mode (-- n) 1001 0001
 0x91
 1 CPU-clock

n is the value in mode.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

51

push ri (-- n) 1000 xxxx
 0x8?
 1 CPU-clock

n is the value in ri (local register i, i.e. r0–r14).

If ri is in the local-register stack cache (i � ldepth) the value in ri is pushed onto the operand stack. If ri is not
currently in the local-register stack cache (i > ldepth), cells starting at r(ldepth+1) are read from memory sequentially
until ri is reached. The value in ri is then pushed onto the operand stack.

Equivalent to Java byte codes aload_0, aload_1, aload_2, aload_3, fload_0, fload_1, fload_2, fload_3, iload_0,
iload_1, iload_2, iload_3.
Equivalent when executed twice to Java byte codes lload_0, lload_1, lload_2, lload_3, dload_0, dload_1, dload_2,
dload_3.
Equivalent for indexes up to fourteen (almost all actual cases) to Java byte codes aload (vindex), fload (vindex),
iload (vindex).
Equivalent when executed twice for indexes up to thirteen (almost all actual cases) to Java byte codes dload
(vindex), lload (vindex).

Equivalent to ANS Forth word R@.
Equivalent when executed twice to ANS Forth word 2R@.

push si (-- n) s0 1001 0010
 0x92
 s1 1001 0011
 0x93
 s2 1001 1110
 0x9E
 1 CPU-clock

n is the value in si (operand stack register i, i.e., s0, s1 or s2)

Equivalent to Java byte code dup.
Equivalent when executed twice to Java byte code dup2.

Equivalent to ANS Forth words 2DUP, DUP, FDUP, FOVER, OVER.

push sa (-- addr) 1001 1100
 0x9C
 1 CPU-clock

addr is the value in sa. Note that if stack-page exceptions are enabled, a trap might occur and change the state of the
stacks from that returned. See Stack-Page Exceptions on page ?.

push x (-- n) 1001 1000
 0x98
 1 CPU-clock

n is the value in x.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

52

push.b #n (-- n) 1001 0000
 0x90
 1 CPU-clock

n is an eight-bit literal value in the range 0–255. The byte literal is encoded as the last byte in the instruction group.
This allows only one unique push.b # value per instruction group. Multiple push.b # opcodes in the same instruction
group push the same value.

Equivalent for positive values to Java byte code bipush.
Equivalent for some values to Java byte code sipush.

push.l #n (-- n) 0100 1111
 0x4F
 M CPU-clocks

n is a 32-bit literal value. The value is compiled as a full cell following the instruction group. Multiple push.l # in an
instruction group are compiled with data in sequential cells following the instruction group in memory. As the push.l
opcodes are executed, the internally maintained next pc is incremented to move past each cell as it is fetched and
pushed on the stack. Note that skipping a push.l # causes the CPU to execute the literal value because the skipped
push.l # will not have incremented next pc to move past the value.

Equivalent to Java byte code fconst_1, fconst_2, ldc, ldc_w, sipush.
Equivalent when executed twice to Java byte code ldc2_w.

push.n #n (-- n) 0010 xxxx
 0x2?
 1 CPU-clock

n is a literal value in the range -7 to 8. The four least-significant bits of the opcode encode the value for n. The value
is encoded as a two's-complement representation of n except that -8 (1000 binary) is decoded to be +8.

Equivalent to Java byte codes aconst_null, fconst_0, iconst_m1, iconst_0, iconst_1, iconst_2, iconst_3, iconst_4,
iconst_5.
Equivalent for some values to Java byte code bipush.
Equivalent when executed twice to Java byte codes dconst_0, lconst_0, lconst_1.

Equivalent to ANS Forth words FALSE, TRUE.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

53

replb
Replace Byte

replb (n1 n2 -- n3) 1101 1010
 0xDA
 1 CPU-clock

Replace the target byte of n2 with the least-significant byte of n1, leaving the result n3. The target byte is selected by
the two least-significant bits of x, as when accessing a byte in memory.

For example, if x = 0x121, n1 = 0xCCDDEEFF, and n2 = 0x12345678, then n3 = 0x12FF5678.

replw
Replace Word

replw (n1 n2 -- n3) 1110 1011
 0xEB
 1 CPU-clock

Replace the target 16-bit word of n2 with the least-significant word of n1, leaving the result n3. The target word is
selected by the next-to-least-significant bit of x, as when accessing a word in memory. The least-significant bit of x is
ignored.

For example, if x = 0x121, n1 = 0xCCDDEEFF, and n2 = 0x12345678, then n3 = 0xEEFF5678.

replexp
Replace Exponent

replexp (n1 n2 -- n3) 1011 0101
 0xB5
 1 CPU-clock

Replace the exponent field and sign bits of n1 with the corresponding bits of n2. Clear the GRS extension. The
location of the exponent field depends on fp_precision.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

54

ret
Return

ret (--) 0110 1110

(L: addr --) 0x6E
Return from Subroutine M CPU-clocks

Pop addr from the local-register stack into pc to transfer execution to addr.

Equivalent to ANS Forth word EXIT.

reti (--) 0110 1111

(L: addr --) 0x6F
Return from Interrupt M CPU-clocks

Pop addr from the local-register stack into pc to transfer execution to addr. Clear the current interrupt under-service
bit.

rev
Revolve Operand Stack

rev (n1 n2 n3 -- n2 n3 n1) 1110 0100
 0xE4
 1 CPU-clock

Rotate the top three cells of the stack to bring n1 to the top.

Equivalent to the run-time for the ANS Forth words FROT, ROT.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

55

rnd
Round

rnd (n1 -- n2) carry± 1101 0001
 0xD1
 1 CPU-clock

(L: -- addr) only when trap processed 3+M CPU-clocks
Round n1 giving n2. Rounding is based on fp_round_mode, the sign of ct, and the GRS extension. See Rounding,
page 24. If an increment carried out of bit 31 then set carry, clear carry otherwise.

If the value of n2 is different from n1, a rounded exception is signaled. The exception is detected as a change in the
value of bit zero.

scache See _cache.

sdepth See _depth.

sexb
Sign-extend byte

sexb (n1 -- n2) 1101 1000
 0xD8
 1 CPU-clock

Copy the value of bit seven of n1 into bits eight to thirty-one, leaving n2.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

56

sexw
Sign-extend word

sexw (n1 -- n2) 1001 0101
 0x95
 1 CPU-clock

Copy the value of bit fifteen of n1 into bits sixteen to thirty-one, leaving n2

Equivalent to Java byte code i2b.

shift_

The number of CPU-clock cycles required to shift the specified number of bits depends on the number of bits requested.
While the count � eight the value (single or double) is shifted eight bits each CPU-clock cycle. When the count becomes
less than eight the shifting is finished at one bit per CPU-clock cycle. For instance, the worst-case useful shift is 31 bits
(either left or right) and takes eleven CPU-clock cycles—three 8-bit shifts and seven 1-bit shifts plus one CPU-clock
cycle for setup. A 32-bit shift would take five CPU-clock cycles. The counts are modulo 64 in sign-magnitude
representation using only the six least-significant bits for the magnitude and bit 31 for the sign. A zero in the six least-
significant bits represents zero. (Sign-magnitude representation here is a positive integer count in the six least-significant
bits, the middle bits ignored, and bit 31 indicating the sign, zero is positive, one is negative).

shift (n1 n2 -- n3) carry± (n2>0) 1110 1110
 0xEE
 1 to 11 CPU-clocks

Shift n1 by �n2� bits leaving the result n3. If n2 is positive the shift is to the left, each bit is shifted out through
carry, and zero is shifted into each bit on the right. If n2 is negative the shift is to the right, each bit shifted out is
shifted through the GRS extension, and carry is copied into each high order bit of n1 vacated by the shift. See text
above regarding execution time and format of negative counts.

Equivalent to ANS Forth word LSHIFT.

shiftd (n1 n2 n3 -- n4 n5) carry± (n3>0) 1110 1111
Shift Double 0xEF
 1 to 15 CPU-clocks

Shift the cell pair n2n1 by �n3� bits leaving the resulting cell pair n5n4. If n3 is positive the shift is to the left, each
bit is shifted out of n2 through carry, and zero is shifted into each bit on the right into n1. If n3 is negative the shift is
to the right, each bit shifted out of n1 is shifted through the GRS extension, and carry is copied into each high order
bit of n2 vacated by the shift. See text above regarding execution time and format of negative counts.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

57

shl_
Shift Left

shl #1 (n1 -- n2) carry± 1110 0010
Shift Left 0xE2
 1 CPU-clock

Shift n1 one bit to the left leaving the result n2. The high order bit of n1 shifted out goes into carry. The vacated bit
on the right of n1 is filled with zero.

Equivalent to ANS Forth word 2*.

shl #8 (n1 -- n2) carry± 1110 1100
Shift Left Byte 0xEC
 1 CPU-clock

Shift n1 eight bits (one byte) to the left leaving n2. The last bit shifted out goes into carry. The vacated eight bits on
the right are filled with zeros.

shld #1 (n1 n2 -- n3 n4) carry± 1110 0110
Shift Left Double 0xE6
 1 CPU-clock

Shift cell pair n2n1 one bit to the left leaving the result n4n3. The high order bit of n2 shifted out goes into carry.
The vacated bit on the right of n1 is filled with zero.

Equivalent to ANS Forth word D2*.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

58

shr_
Shift Right

shr #1 (n1 -- n2) 1110 0011
Shift Right 0xE3
 1 CPU-clock

Shift n1 one bit to the right leaving the result n2. The bit shifted out is shifted into the GRS extension. The vacated
bit on the left is filled with carry.

shr #8 (n1 -- n2) 1110 1101
Shift Right Byte 0xED
 1 CPU-clock

Shift n1 eight bits (one byte) to the right leaving the result n2. The bits shifted out are shifted into the GRS
extension. The vacated eight bits on the left are filled with carry.

shrd #1 (n1 n2 -- n3 n4) 1110 0111
Shift Right Double 0xE7
 1 CPU-clock

Shift cell pair n2n1 one bit to the right leaving the result n4n3. The bit shifted out of n1 is shifted into the GRS
extension. The vacated bit in n2 on the left is filled with carry.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

59

skip
Skip if Condition

skip conditionally or unconditionally skips execution of the remainder of the instruction group. If the condition is
true, skip the remainder of the instruction group and continue execution with the following instruction group. If
condition is false, continue execution with the next instruction.

WARNING: Do not skip a push.l #. Since the CPU will not have executed the push.l # opcode, the corresponding
literal cell is not skipped. The result will be the CPU executing the literal cell.

skip (--) 0011 0000
Skip Unconditionally 0x30
 Mprefetch CPU-clocks

Unconditionally skip the remainder of the instruction group.

skipc (--) 0011 0011
Skip if Carry 0x31
 1 (no carry) Mprefetch (carry) CPU-clocks

If carry is set, skip the remainder of the instruction group and continue execution with the next instruction group;
otherwise, continue execution with the next instruction.

skipn
skipnp (n --) 0011 0010
Skip if Negative/Not Positive 0x32
 1 (not neg) Mprefetch (neg) CPU-clocks

If n is negative (neither positive nor zero), skip the remainder of the instruction group and continue execution with
the next instruction group; otherwise, continue execution with the next instruction.

skipnc (--) 0011 0111
Skip if Not Carry 0x35
 1 (carry) Mprefetch (no carry) CPU-clocks

If carry is clear, skip the remainder of the instruction group and continue execution with the next instruction group;
otherwise, continue execution with the next instruction.

skipnn
skipp (n --) 0011 0110
Skip if Not Negative/Positive 0x36
 1 (neg) Mprefetch (not neg) CPU-clocks

If n is not negative (either positive or zero), skip the remainder of the instruction group and continue execution with
the next instruction group; otherwise, continue execution with the next instruction.

skipnz (n --) 0011 0001
Skip if Not Zero 0x37
 1 (zero) Mprefetch (non-zero) CPU-clocks

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

60

If n is not zero, skip the remainder of the instruction group and continue execution with the next instruction group;
otherwise, continue execution with the next instruction.

skipz (n --) 0011 0101
Skip if Zero 0x33
 1 (non-zero) Mprefetch (zero) CPU-clocks

If n is zero, skip the remainder of the instruction group and continue execution with the next instruction group;
otherwise, continue execution with the next instruction.

split
Split Cell

split (n1 -- n2 n3) 1001 1001
 0x99
 1 CPU-clock

Split n1 into two parts so that the lower-half of n1 is in the lower-half of n2 and the upper-half of n1 is in the lower-
half of n3.

For example, if n1 = 0x12345678 then n2 = 0x5678 and n3 = 0x1234.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

61

st
Store Indirect to Memory

st [--r0] (n --) 0110 0100
 0x64
 1+M CPU-clocks

Decrement r0 by four. Store the cell n into memory at the new address in r0. The two least-significant bits of the
address are ignored and treated as zero.

st [--x] (n --) 0110 1000
 0x68
 1+M CPU-clocks

Decrement x by four. Store the cell n into memory at the new address in x. The two least-significant bits of the
address are ignored and treated as zero.

st [r0++] (n --) 0110 0110
 0x66
 M CPU-clocks

Store the cell n into memory at the address in r0. Increment r0 by four. The two least-significant bits of the address
are ignored and treated as zero.

st [r0] (n --) 0110 0010
 0x62
 M CPU-clocks

Store the cell n into memory at the address in r0. The two least-significant bits of the address are ignored and treated
as zero.

st [x++] (n --) 0110 1001
 0x69
 M CPU-clocks

Store the cell n into memory at the address in x. Increment x by four. The two least-significant bits of the address are
ignored and treated as zero.

st [x] (n --) 0110 0001
 0x61
 M CPU-clocks

Store the cell n into memory at the address in x. The two least-significant bits of the address are ignored and treated
as zero.

st [] (n addr -- n) 0110 0000
 0x60
 M CPU-clocks

Store the cell n into memory at address addr. The two least-significant bits of the address are ignored and treated as
zero.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

62

step
Single-Step Processor

step (--) 0011 0100

(L: addr1 -- addr2) 0x34
 2M+2+inst CPU-clocks

Pop addr1 from the local-register stack into pc and continue execution at addr1 for one instruction. Then perform a
call subroutine to the single-step trap location, 0x138. addr2 is the address of the next instruction following addr1.

sto
Store Indirect to On-Chip Resource

sto [] (n addr -- n) 1011 0000
 0xB0
 1 CPU-clock

Store n into the on-chip resource register at address addr. The programmer must ensure that sto [] is not executed to
access (even if not changed) any configuration register containing information for a memory group with a bus
transaction in process. For valid values of addr, see On-Chip Resource Registers, page 89.

sto.i [] (n bit_addr -- n) 1011 0001
 0xB1
 1 CPU-clock

If n is non-zero, set the bit at the on-chip resource register address bit_addr; otherwise, clear the bit. For valid values
of addr, see On-Chip Resource Registers, page 89.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

63

sub
Subtract

sub (n1 n2 -- n3) carry± 1100 1000
 0xC8
 1 CPU-clock

Subtract n2 from n1 leaving the difference n3. If computing the difference required a borrow, carry is set; otherwise,
carry is cleared.

Equivalent to Java byte code isub.

Equivalent to ANS Forth word -.

subb
Subtract with Borrow

subb (n1 n2 -- n3) carry± 1100 1010
 0xCA
 1 CPU-clock

Subtract n2 and carry from n1 leaving the difference n3. If computing the difference required a borrow, carry is set;
otherwise, carry is cleared.

subexp
Subtract Exponents

subexp (n1 n2 -- n3 n4 n5) 1101 0011
 0xD3
 2 CPU-clocks

(L: -- addr) only when trap processed 4+M CPU-clocks

Perform the following:
 Exponent_Field(n5) = Exponent_Field(n1) - Exponent_Field(n2) + BIAS - 1
 Sign_Bit(n5) = Sign_Bit(n1) XOR Sign_Bit(n2)
BIAS is 127 (0x3F800000 in bit position) for single precision and 1023 (0x3FF00000 in bit position) for double
precision, as selected by fp_precision.

Compute as described above. Clear the exponent-field bits and sign bit and set the hidden bit of n1 and n2 giving n3
and n4, respectively. n5 is the result of the computation. After completion, if the exponent-field calculation result
equaled or exceeded the maximum value of the exponent field (exponent result � 255 for single, exponent result �
2047 for double) an overflow exception is signaled. If the exponent-field calculation result is less than or equal to
zero an underflow exception is signaled. When an exception is signaled, the exponent field of n5 contains as low-
order many bits of the result as it will hold.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

64

testb
Test Bytes for Zero

testb (n -- n) carry± 1101 1001
 0xD9
 1 CPU-clock

If any byte of n is zero set carry, otherwise clear carry.

testexp
Test Exponent

testexp (n1 n2 -- n1 n2) carry± 1101 0100
 0xD4
 1 CPU-clock

(L: -- addr) only when trap processed 3+M CPU-clocks
Clear the GRS extension. If the exponent field in n1 or n2 is all zeros or all ones, an exponent exception is signaled and
carry is set; otherwise, carry is cleared. The location of the exponent field depends on fp_precision.

xcg
Exchange

xcg (n1 n2 -- n2 n1) 1011 0010
 0xB2
 1 CPU-clock

Exchange the top two operand stack cells.

Equivalent to Java byte code swap.

Equivalent to the ANS Forth words FSWAP, SWAP.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

65

xor
Bitwise Exclusive OR

xor (n1 n2 -- n3) carry clear 1100 0011
 0xC3
 1 CPU-clock

Perform a bitwise EXCLUSIVE OR of n1 and n2 giving the result n3.

Equivalent to Java byte code ixor.

Equivalent to ANS Forth word XOR.

 IGNIIGNIIGNIIGNITE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual TE™ IP Reference Manual

66

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode
add pc bb muls d5 push g3 73 push.n #7 27
add c0 mulu d7 push g4 74 push.n #8 28
adda e8 mxm df push g5 75 replb da
addc c2 neg c9 push g6 76 replexp b5
addexp d2 nop ea push g7 77 replw eb
and e1 norml c7 push g8 78 ret 6e
bkpt 3c normr c6 push g9 79 reti 6f
br offset 00…07 notc dd push g10 7a rev e4
br [] 4b or e0 push g11 7b pnd d1
bz offset 10…17 pop b3 push g12 7c scache 45
call offset 08…0f pop ct b4 push g13 7d sdepth 9f
call [] 4e pop g0 50 push g14 7e sexb d8
cmp cb pop g1 51 push g15 7f sexw 95
copyb d0 pop g2 52 push mode 91 sframe bf
dbr offset 18…1f pop g3 53 push la 9d shift ee
dec ct,#1 c1 pop g4 54 push lstack 9a shiftd ef
dec #4 cd pop g5 55 push r0 80 shl #1 e2
dec #1 cf pop g6 56 push r1 81 shl #8 ec
denorm c5 pop g7 57 push r2 82 shld #1 e6
di b7 pop g8 58 push r3 83 shr #1 e3
divu de pop g9 59 push r4 84 shr #8 ed
ei b6 pop g10 5a push r5 85 shrd #1 e7
eqz e5 pop g11 5b push r6 86 skip 30
expdif c4 pop g12 5c push r7 87 skipc 31
extexp db pop g13 5d push r8 88 skipn 32
extsig dc pop g14 5e push r9 89 skipnc 35
iand e9 pop g15 5f push r10 8a skipnn 36
inc #4 cc pop la bd push r11 8b skipnp 32
inc #1 ce pop lstack ba push r12 8c skipnz 37
lcache 4d pop mode b9 push r13 8d skipp 36
ld [] 40 pop r0 a0 push r14 8e skipz 33
ld [x] 41 pop r1 a1 push s0 92 split 99
ld [r0] 42 pop r2 a2 push s1 93 st [] 60
ld [--r0] 44 pop r3 a3 push s2 9e st [x] 61
ld [r0++] 46 pop r4 a4 push sa 9c st [r0] 62
ld [x++] 49 pop r5 a5 push x 98 st [--r0] 64
ld [--x] 4a pop r6 a6 push.b # byte 90 st [r0++] 66
ld.b [] 48 pop r7 a7 push.l # cell 4f st [--x] 68
ld.w [] 4c pop r8 a8 push.n #-7 29 st [x++] 69
ldepth 9b pop r9 a9 push.n #-6 2a step 34
ldo [] 96 pop r10 aa push.n #-5 2b sto [] b0
ldo.i [] 97 pop r11 ab push.n #-4 2c sto.i [] b1
lframe be pop r12 ac push.n #-3 2d sub c8
mloop 38 pop r13 ad push.n #-2 2e subb ca
mloopc 39 pop r14 ae push.n #-1 2f subexp d3
mloopn 3a pop sa bc push.n #0 20 testb d9
mloopnc 3d pop x b8 push.n #1 21 testexp d4
mloopnn 3e push 92 push.n #2 22 xcg b2
mloopnz 3f push ct 94 push.n #3 23 xor c3
mloopp 3e push g0 70 push.n #4 24
mloopz 3b push g1 71 push.n #5 25
mulfs d6 push g2 72 push.n #6 26

Table 35 CPU Mnemonics and Opcodes (Mnemonic Order)

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

67

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic
00…07 br offset 53 pop g3 8d push r13 c7 norml
08…0f call offset 54 pop g4 8e push r14 c8 sub
10…17 bz offset 55 pop g5 8f c9 neg
18…1f dbr offset 56 pop g6 90 push.b # byte ca subb
20 push.n #0 57 pop g7 91 push mode cb cmp
21 push.n #1 58 pop g8 92 push s0 cc inc #4
22 push.n #2 59 pop g9 93 push s1 cd dec #4
23 push.n #3 5a pop g10 94 push ct ce inc #1
24 push.n #4 5b pop g11 95 sexw cf dec #1
25 push.n #5 5c pop g12 96 ldo [] d0 copyb
26 push.n #6 5d pop g13 97 ldo.i [] d1 rnd
27 push.n #7 5e pop g14 98 push x d2 addexp
28 push.n #8 5f pop g15 99 split d3 subexp
29 push.n #-7 60 st [] 9a push lstack d4 testexp
2a push.n #-6 61 st [x] 9b ldepth d5 muls
2b push.n #-5 62 st [r0] 9c push sa d6 mulfs
2c push.n #-4 63 9d push la d7 mulu
2d push.n #-3 64 st [--r0] 9e push s2 d8 sexb
2e push.n #-2 65 9f sdepth d9 testb
2f push.n #-1 66 st [r0++] a0 pop r0 da replb
30 skip 67 a1 pop r1 db extexp
31 skipc 68 st [--x] a2 pop r2 dc extsig
32 skipn 69 st [x++] a3 pop r3 dd notc
32 skipnp 6a a4 pop r4 de divu
33 skipz 6b a5 pop r5 df mxm
34 step 6c a6 pop r6 e0 or
35 skipnc 6d a7 pop r7 e1 and
36 skipnn 6e ret a8 pop r8 e2 shl #1
36 skipp 6f reti a9 pop r9 e3 shr #1
37 skipnz 70 push g0 aa pop r10 e4 rev
38 mloop 71 push g1 ab pop r11 e5 eqz
39 mloopc 72 push g2 ac pop r12 e6 shld #1
3a mloopn 73 push g3 ad pop r13 e7 shrd #1

3b mloopz 74 push g4 ae pop r14 e8 adda
3c bkpt 75 push g5 af e9 iand

3d mloopnc 76 push g6 b0 sto [] ea nop
3e mloopnn 77 push g7 b1 sto.i [] eb replw
3e mlooppp 78 push g8 b2 xcg ec shl #8
3f mloopnz 79 push g9 b3 pop ed shr #8
40 ld [] 7a push g10 b4 pop ct ee shift
41 ld [x] 7b push g11 b5 replexp ef shiftd
42 ld [r0] 7c push g12 b6 ei f0
43 7d push g13 b7 di f1
44 ld [--r0] 7e push g14 b8 pop x f2
45 scache 7f push g15 b9 pop mode f3
46 ld [r0++] 80 push r0 ba pop lstack f4
47 81 push r1 bb add pc f5
48 ld.b [] 82 push r2 bc pop sa f6
49 ld [x++] 83 push r3 bd pop la f7
4a ld [--x] 84 push r4 be lframe f8
4b br [] 85 push r5 bf sframe f9
4c ld.w [] 86 push r6 c0 add fa
4d lcache 87 push r7 c1 dec ct,#1 fb
4e call [] 88 push r8 c2 addc fc
4f push.l # cell 89 push r9 c3 xor fd
50 pop g0 8a push r10 c4 expdif fe
51 pop g1 8b push r11 c5 denorm ff
52 pop g2 8c push r12 c6 normr

Table 36 CPU Mnemonics and Opcodes (Opcode Order)

 IGNITE™IP Reference Manual IGNITE™IP Reference Manual IGNITE™IP Reference Manual IGNITE™IP Reference Manual

68

The Interrupt Controller (INTC) allows multiple

requests to gain, in an orderly and prioritized manner, the
attention of the CPU. The INTC supports up to eight
prioritized interrupt requests. Interrupts are received from
the bit inputs through ioin.

Resources

The INTC consists of several registers and associated
control logic. Interrupt zero, which corresponds to bit zero
of the registers, has the highest priority; interrupt seven,
which corresponds to bit seven of the registers, has the
lowest priority. The INTC and related registers include:

• Bit input register, ioin: bit inputs configured as
interrupt requests or general bit inputs. See Figure 11.
• Interrupt pending register, ioip: indicates which
interrupts have been recognized, but are waiting to be
prioritized and serviced. See Figure 12.
• Interrupt under service register, ioius: indicates which
interrupts are currently being serviced. See Figure 13.
• Interrupt enable register, ioie: indicates which ioin
bits are to be recognized as interrupt requests. See Figure
15.
The bit inputs are low true used as interrupt requests or as
directly readable bit inputs. Interrupt progress status is
read as low true in ioin and as high true in ioie and ioius.

Operation

 An interrupt request can arrive from a zero bit in ioin,
typically from an external input low, or from the CPU
writing the bit low. Interrupt request zero comes from ioin
bit zero; interrupt request one comes from ioin bit one, the
other interrupt requests are similarly assigned.

Associated with each of the eight interrupt requests is
an interrupt service routine (ISR) executable-code vector
located in memory. See Figure 3. A single ISR executable-
code vector for a given interrupt request is used for all
requests on that interrupt. It is programmed to contain
executable code, typically a branch to the ISR.

Interrupt Request Servicing

 When an interrupt request occurs, the corresponding
bit in ioip is set, and the interrupt request is now a
pending interrupt. Pending interrupts are prioritized each
CPU-clock cycle. The interrupt_en bit in mode holds the
current global interrupt enable state. It can be set with the
CPU enable-interrupt instruction, ei; cleared with the
disable-interrupt instruction, di; or changed by modifying
mode. Globally disabling interrupts allows all interrupt
requests to reach ioip, but prevents the pending interrupts
in ioip from being serviced.

When interrupts are enabled, interrupts are
recognized by the CPU between instruction groups, just
before the execution of the first instruction in the group.
This allows short, atomic, uninterruptable instruction
sequences to be written easily without having to save,
restore, and manipulate the interrupt state. The stack
architecture allows interrupt service routines to be
executed without requiring registers to be explicitly saved,
and the stack caches minimize the memory accesses
required when making additional register resources
available.

If interrupts are globally enabled and the highest-
priority ioip bit has a higher priority than the highest-
priority ioius bit, the highest-priority ioip bit is cleared,
the corresponding ioius bit is set, and the CPU is
interrupted just before the next execution of the first
instruction in an instruction group. This nests the interrupt
servicing, and the pending interrupt is now the current
interrupt under service. The ioip bits are not considered
for interrupt servicing while interrupts are globally
disabled, or while none of the ioip bits has a higher
priority than the highest-priority ioius bit.

Unless software modifies ioius, the current interrupt
under service is represented by the highest-priority ioius
bit currently set. reti is used at the end of ISRs to clear the
highest-priority ioius bit that is set and to return to the
interrupted program. If the interrupted program was a
lower-priority interrupt service routine, this effectively
“unnests” the interrupt servicing.

Recognizing Interrupts

 An ioin bit is configured to recognize an interrupt
request source if the corresponding ioie bit is set. Once a
zero reaches ioin, it is available to request an interrupt. An
interrupt request is forced in software by clearing the
corresponding ioin bit or by setting the corresponding ioip
bit. Individually disabling an interrupt request by clearing

Interrupt Controller

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

69

its ioie bit prevents a corresponding zero bit in ioin from
being recognized.

While an interrupt request is being processed, until its

ISR terminates by executing reti, the corresponding ioin
bit is not zero-persistent and follows the sampled level of
the external input pin. Specifically, for a given interrupt
request, while its ioie bit is set, and its ioip bit or ioius bit
is set, its ioin bit is not zero-persistent. This effect can be
used to disable zero-persistent behavior on non-
interrupting bits. See Zero Persistent

ISR Processing

 When an interrupt request is recognized by the CPU,
a call to the corresponding ISR executable-code vector is
performed, and interrupts are blocked until an instruction
that begins in byte one of an instruction group is executed.
To service an interrupt without being interrupted by a
higher-priority interrupt:
• the ISR executable-code vector typically contains a
four-byte branch, and
• the first instruction group of the interrupt service
routine must globally disable interrupts. See the code
example in Table 37.

Table 37 Code Example: ISR Vectors

 IGNITE™IP Reference Manual IGNITE™IP Reference Manual IGNITE™IP Reference Manual IGNITE™IP Reference Manual

70

If interrupts are left globally enabled during ISR

processing, a higher-priority interrupt can interrupt the
CPU during processing of the current ISR. This allows
devices with more immediate servicing requirements to be
serviced promptly even when frequent interrupts at many
priority levels are occurring.

Note that there is a delay of one CPU-clock cycle
between the execution of ei, di, or pop mode and the
change in the global interrupt enable state taking effect.
To ensure the global interrupt enable state change takes
effect before byte zero of the next instruction group, the
state-changing instruction must not be the last instruction
in the current instruction group.

If the global interrupt enable state is to be changed by
the ISR, the prior global interrupt enable state can be
saved with push mode and restored with pop mode within
the ISR. Usually a pop mode, reti sequence is placed in
the same instruction group at the end of the ISR to ensure
that reti is executed, and the local-register stack unnests,
before another interrupt is serviced. Since the return
address from an ISR is always to byte zero of an
instruction group (because of the way interrupts are
recognized), another interrupt can be serviced
immediately after execution of reti. See the code example
in Table 37.

As described above for processing ISR executable-
code vectors, interrupt requests are similarly blocked
during the execution of all traps. This allows software to
prevent, for example, further data from being pushed on
the local-register stack due to interrupts during the
servicing of a local-register-stack overflow exception.
When resolving concurrent trap and interrupt requests,
interrupts have the lowest priority.

 Eight external bit inputs are available in bit input
register ioin. They are shared for use as interrupt requests
and as bit inputs for general use by the CPU.

Resources

 The bit inputs consist of several registers, package
pins, and associated input sampling circuitry. These
resources include:

• Bit input register, ioin: bit inputs configured as
interrupt requests or general bit inputs. See Figure 11.
• Interrupt enable register, ioie: indicates which ioin
bits are to be recognized as interrupt requests. See Figure
15.
• Interrupt pending register, ioip: indicates which
interrupts have been recognized, but are waiting to be
prioritized and serviced. See Figure 12.
• Interrupt under service register, ioius: indicates which
interrupts are currently being serviced. See Figure 13.
• Bit input pins, _I _N[7:0].

Input Sampling

 The bit inputs are sampled from _I _N[7:0] every CPU-
clock cycle and clocked into the IOIN register.

CPU-clock

1 of 8

Zero-
Persistence

Control

zero-persist INx
INTC

write INx
CPU

D Q

CLK

ioXin_i
INx

Figure 10 Bit Input Block Diagram

Zero Persistent

The bit inputs reaching ioin are normally zero-
persistent. That is, once an ioin bit is zero, it stays zero
regardless of the bit state at subsequent samplings until
the bit is “consumed” and released, or is written with a
one by the CPU. Zero-persistent bits have the advantage
of both edge-sensitive and level-sensitive inputs, without
the noise susceptibility and non-shareability of edge-
sensitive inputs. Under certain conditions during ioin
interrupt servicing, the ioin bits are not zero-persistent. An
effect of the INTC can be used to disable zero-persistent
behavior on the bits. See General-Purpose Bits below.

The code examples assume both zero persistence and
input sampling. When both zero persistence and input

Bit Inputs

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

71

sampling are disabled the inputs read read in the same
manner and behave conventionally.

Table 38 Code Example: Bit Input Without Zero-
Persistence

Interrupt Usage
 An ioin bit is configured as an interrupt request
source when the corresponding ioie bit is set. While an
interrupt request is being processed, until its ISR
terminates by executing reti, the corresponding ioin bit is
not zero-persistent and follows the sampled level of the
external input. Specifically, for a given interrupt request,
while its ioie bit is set, and its ioip bit or ioius bit is set, its
ioin bit is not zero-persistent. This effect can be used to
disable zero-persistent behavior on non-interrupting bits
(see below).

General-Purpose Bits
 If an ioin bit is not configured for interrupt requests
then it is a zero-persistent general-purpose ioin bit.
Alternatively, by using an effect of the INTC, general-
purpose ioin bits can be configured without zero-
persistence. Any bits so configured should be the lowest-
priority ioin bits to prevent blocking a lower-priority
interrupt. They are configured by setting their ioie and
ioius bits. The ioius bit prevents the ioin bit from zero-
persisting and from being prioritized and causing an
interrupt request. See the code example in Table 38.

CPU Usage
 Bits in ioin are read and written by the CPU as a
group with ldo [ioin] and sto [ioin], or are read and
written individually with ldo.i [ioXin_i] and sto.i
[ioXin_i]. Writing zero bits to ioin has the same effect as
though the external bit inputs had transitioned low for one
sampling cycle, except that there is no sampling delay.
This allows software to simulate events such as external
interrupt requests. Writing one bits to ioin, unlike data
from external inputs when the bits are zero-persistent,
releases persisting zeros to accept the current sample. The
written data is available immediately after the write
completes. The CPU can read ioin at any time, without
regard to the designations of the ioin bits, and with no
effect on the state of the bits. The CPU does not consume
the state of ioin bits during reads. See the code examples
in Table 39.

Table 39 Code Example: CPU Usage of Bit
Inputs

 IGNITE™IP Reference Manual IGNITE™IP Reference Manual IGNITE™IP Reference Manual IGNITE™IP Reference Manual

72

 To perform a “real-time” external-bit-input read on
zero-persistent bits, ones bits are written to the bits of
interest in ioin before reading ioin. This releases any
persisting zeros, latches the most recently resolved
sample, and reads that value. Bits that are not configured
as zero-persistent do not require this write. Note that any
value read can be as much as two worst-case sample
delays old. To read the values currently on the external
inputs requires waiting two worst-case sample delays for
the values to reach ioin. See the code example in Table 40.

Table 40 Code Example: CPU “Real-Time” Bit
Input Read

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

73

Bit Outputs

Eight general-purpose bit outputs can be set high or

low by the CPU. The bits are available in the bit output
register, ioout.

Resources

 The bit outputs consist of a register and pins. These
resources include:
• Bit output register, ioout: bits that were last written
by the CPU. See Figure 15.
• Bit outputs, out[7:0]

The on-chip resource registers comprise portions of

various functional areas on the CPU including the CPU,
INTC, and bit inputs. The registers are addressed from
the CPU in their own address space using the
instructions ldo and sto at the register level, or ldo. and

sto. at the bit level (for those registers that have bit
addresses). On other processors, resources of this type
are often either memory-mapped or opcode-mapped. By
using a separate address space for these resources, the
normal address space remains uncluttered, and opcodes
are preserved. Except as noted, all registers are readable
and writable. Areas marked “Reserved Zeros” contain
no programmable bits and always return zero. Areas
marked “Reserved” contain unused programmable bits.
Both areas might contain functional programmable bits
in the future.

The first several registers are bit addressable in
addition to being register addressable. This allows the
CPU to modify individual bits without corrupting
other bits that might be changed concurrently by
INTC logic.

 The bits are read and written by the CPU as a
group with ldo [ioout] and sto [ioout], or are read and
written individually with ldo.i [ioXout_i] and sto.i
[ioXout_i]. When written, the new values are available
immediately after the write completes.

On-Chip Resource Registers

00 ioin Bit Input

Bit Address Mnemonic Description
07 io7in_i I/O bit 7 input
06 io6in_i I/O bit 6 input
05 in6in_i I/O bit 5 input
04 io4in_i I/O bit 4 input
03 io3in_i I/O bit 3 input
02 io2in_i I/O bit 2 input
01 io1in_i I/O bit 1 input
00 io0in_i I/O bit 0 input

8 7 6 5 4 3 2 1 031
Reserved Zeros

 Figure 11 Bit Input Register

 IGNITE™IP Reference Manual IGNITE™IP Reference Manual IGNITE™IP Reference Manual IGNITE™IP Reference Manual

74

 Contains sampled data from inputs[7:0]. ioin is the source of inputs for all consumers of bit inputs. Bits are zero-
persistent: once a bit is zero in ioin it stays zero until consumed by the INTC, or written by the CPU with a one.
Under certain conditions bits become not zero-persistent. See Bit Inputs. The bits can be individually read, set and
cleared to prevent race conditions between the CPU and the interrupt controller logic.

20 ioip Interrupt Pending

Bit Address Mnemonic Description
27 io7ip_i I/O bit 7 interrupt pending
26 io6ip_i I/O bit 6 interrupt pending
25 io5ip_i I/O bit 5 interrupt pending
24 io4ip_i I/O bit 4 interrupt pending
23 io3ip_i I/O bit 3 interrupt pending
22 io2ip_i I/O bit 2 interrupt pending
21 io1ip_i I/O bit 1 interrupt pending
20 io0ip_i I/O bit 0 interrupt pending

8 7 6 5 4 3 2 1 031
Reserved Zeros

Figure 12 Interrupt Pending Register

Contains interrupt requests that are waiting to be serviced. Interrupts are serviced in order of priority (0 = highest, 7

= lowest). An interrupt request from an I/O-channel transfer or from int occurs by the corresponding pending bit being
set. Bits can be set or cleared to submit or withdraw interrupt requests. When an ioip bit and corresponding ioie bit are
set, the corresponding ioin bit is not zero-persistent. See Interrupt Controller. The bits can be individually read, set and
cleared to prevent race conditions between the CPU and the interrupt controller logic.

40 ioius Interrupt Under Service

Bit Address Mnemonic Description
47 io7ius_i I/O bit 7 interrupt under service
46 io6ius_i I/O bit 6 interrupt under service
45 io5ius_i I/O bit 5 interrupt under service
44 io4ius_i I/O bit 4 interrupt under service
43 io3ius_i I/O bit 3 interrupt under service
42 io2ius_i I/O bit 2 interrupt under service
41 io1ius_i I/O bit 1 interrupt under service
40 io0ius_i I/O bit 0 interrupt under service

8 7 6 5 4 3 2 1 031
Reserved Zeros

Figure 13 Interrupt Under Service Register

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

75

 Contains the current interrupt service request and those that have been temporarily suspended to service a higher-
priority request. When an ISR executable-code vector for an interrupt request is executed, the ioius bit for that interrupt
request is set and the corresponding ioip bit is cleared. When an ISR executes reti, the highest-priority interrupt under-
service bit is cleared. The bits are used to prevent interrupts from interrupting higher-priority ISRs. When an ioius bit and
corresponding ioie bit are set, the corresponding ioin bit is not zero-persistent. See Interrupt Controller.

The bits can be individually read, set and cleared to prevent race conditions between the CPU and INTC logic.

60 ioout Bit Output

Bit Address Mnemonic Description
67 io7out_i I/O bit 7 output
66 io6out_i I/O bit 6 output
65 io5out_i I/O bit 5 output
64 io4out_i I/O bit 4 output
63 io3out_i I/O bit 3 output
62 io2out_i I/O bit 2 output
61 io1out_i I/O bit 1 output
60 io0out_i I/O bit 0 output

8 7 6 5 4 3 2 1 031
Reserved Zeros

Figure 14 Bit Output Register

Contains the bits from CPU bit-output operations. Bits appear on OUT[7:0] immediately after writing.

The bits can be individually read, set and cleared.

80 ioie Interrupt Enable

Bit Address Mnemonic Description
87 io7ie_i I/O bit 7 interrupt enable
86 io6ie_i I/O bit 6 interrupt enable
85 io5ie_i I/O bit 5 interrupt enable
84 io4ie_i I/O bit 4 interrupt enable
83 io3ie_i I/O bit 3 interrupt enable
82 io2ie_i I/O bit 2 interrupt enable
81 io1ie_i I/O bit 1 interrupt enable
80 io0ie_i I/O bit 0 interrupt enable

8 7 6 5 4 3 2 1 031
Reserved Zeros

Figure 15 Interrupt Enable Register

 IGNITE™IP Reference Manual IGNITE™IP Reference Manual IGNITE™IP Reference Manual IGNITE™IP Reference Manual

76

Allows a corresponding zero bit in ioin to request the corresponding interrupt service. When an enabled interrupt
request is recognized, the corresponding ioip bit is set and the corresponding ioin bit is no longer zero-persistent. See
Interrupt Controller, page 79. The bits can be individually read, set and cleared. Bit addressability for this register is
an artifact of its position in the address space, and does not imply any race conditions on this register can exist.

31 0
120 mfltaddr Memory Fault Address Register

Register is read-only.
di

d

Memory Fault Address

Figure 16 Memory Fault Address Register

 When a memory page-fault exception occurs during a memory read or write, mfltaddr contains the address that
caused the exception. The contents of mfltaddr and mfltdata are latched until the first read of mfltaddr after the fault.
After reading mfltaddr, the data in mfltaddr and mfltdata are no longer valid.

31 0

mfltdata Memory Fault Data Register 140

Register is read-only.
di

d

Memory Fault Data

Figure 17 Memory Fault Data Register

When a memory page-fault exception occurs during a memory write, mfltdata contains the data to be stored

at mfltaddr. The contents of mfltaddr and mfltdata are latched until the first read of mfltaddr after the fault.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

77

 Miscellaneous C

R i t31 0 5 6 7

1A0 miscc

Mnemonic Description

memory system posted-write enablemspwe

Reserved Zeros

Figure 18 Miscellaneous C Register

If set, enables a one-level CPU posted-write buffer, which allows the CPU to continue executing after a write to

memory occurs. A posted write has precedence over subsequent CPU reads to maintain memory coherency. If clear, the
CPU must wait for writes to complete before continuing.

Onchip Resource Register values upon CPU reset:
 Table 40 provides the values of all of the onchip registers upon the occurrence of a reset event to the IGNITE CPU.

Address Register Description Initial value

000 ioin Bit Input Register 0000 00FF
020 ioip Interrupt Pending Register 0000 0000
040 ioius Interrupt Under Service Register 0000 0000
060 ioout Bit Output Register 0000 00FF
080 ioie Interrupt enable Register 0000 0000
120 mfltaddr Memory Fault Address Register xxxx xxxx
140 mfltdata Memory Fault Data Register xxxx xxxx
1A0 misc Miscellaneous C Register 0000 0000

Table 40 Resource Register Reset Values

 IGNITE™IP Reference Manual IGNITE™IP Reference Manual IGNITE™IP Reference Manual IGNITE™IP Reference Manual

78

This section of the document provides all of the information a designer will require designing the logic to interface with
memory and other peripheral devices for the Ignite CPU processor core embodied as a net-list in EDIF file format.

Bus Interface

The bus interface of the Ignite CPU is relatively simple. There are no special requirements other than depicted in the
timing diagrams.

Posted Writes

The Ignite CPU supports a one-deep posted write to allow it to continue execution while the write to the external device
is in progress. Typically CPU execution will subsequently stall waiting for the next bus operation to start.

SYMBOL TYPE DESCRIPTION
*RESET I RESET: Asserting this signal (active low) causes the CPU to initialize all

internal registers and begin execution at the hardware reset location

CLOCK I CLOCK INPUT: This is the clock input to the processor provided by a clock
source. The processor runs at the same frequency of the clock input

MAR [31:0] O ADDRESS OUTPUT: This is the 32-bits of address bus produced by the
processor. The address bus is non-multiplexed

MDR [31:0] I/ O DATA OUTPUT: This is 32-bits of data bus produced by the processor. The data
bus is non-multiplexed and conforms to big-endian standard

*INB [7:0] I BIT INPUTS: These active low signals act as general or interrupts inputs to the
processor

OUTB [7:0] O BIT OUTPUTS: These byte signals acts as general-purpose outputs from the
processor. These are bit programmable.

WR O READ/WRITE: This acts as the Read/Write signal produced by the processor. A
logic HIGH serves as Write. A logic LOW serves as Read.

REQ O REQUEST: This output signal indicates the beginning of a read or write transfer
cycle of the processor from an idle state

DVAL I DATA VALID: This input signal generated by external indicates the completion of
a read or write transfer to the processor

*FAULTB I MEMORY FAULT: This active low input signal generated by external logic
indicates a faulty memory location access by the processor

Table 41 Signal Descriptions

Reset *RESET, input

When asserted active (low), completely initializes the CPU. When de-asserted, CPU execution begins at the address
0x80000008. This signal is internally synchronized with the CPU clock.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

79

The *Reset signal must stay activate for at least 4 clock cycles for the processor to reach its quiescent state.

Clock CLOCK, input

There is no phase lock loop built into the Ignite IP and therefore all operations within the Ignite IP run off this clock input
Baring a few, all instructions run in a single cycle clock as mentioned in the Ignite Reference Manual.

Address MAR [31:0], output

The address bus provides non-multiplexed address for current CPU bus access. The rising edge of request signal
indicates the start of bus read/write transfer cycle, which also indicates a valid address on the bus.

The address remains valid until the end of the rising edge of the CPU clock following a data valid dval input going active.
The two least-significant bits of the address are ignored when fetching or writing cell-wide data. The first valid address
after a reset has been active is the CPU reset address.

Data MDR [31:0], input/output

Provides 32 bit data input when write is inactive. Provides 32 bit data output when write is active.
The rising edge of Request signal indicates valid write data.

The write data remains valid until the end of the rising edge of the CPU clock following a data valid dval input going
active. For read operations the read data needs to meet the setup and hold time with respect to rising edge of CPU clock
after Data valid signal dval goes active.

The interface to the ignite_ip EDIF file logic consists of a 32-bit data in bus mdi<31:0> and a 32-bit data out bus
mdo<31:0>. The bi-directional pin driver of the FPGA combines these to form MDR <31:0>.

Input, INB [7:0], input

Bit inputs can be used for general-purpose inputs or as interrupt requests. These inputs are accessible by the CPU through
ioin register. These inputs need to be synchronized with the CPU clock before presenting to the Ignite IP FPGA device.

Output, OUTB [7:0], output

Bit outputs for general-purpose use. These bits are accessible by the CPU through the ioout register.

Read/Write WR, output

When active, indicates that the current bus cycle is a write cycle. When inactive, indicates the current bus cycle is a read
cycle. This signal is active concurrent with the REQ signal that signifies the start of a bus transfer cycle. This signal goes
active at the rising edge of the CPU clock.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

 80

CPU data transfer state, REQ, output

This signal goes active at the rising edge of the CPU clock indicating the beginning of a bus transfer cycle.

Data Valid DVAL, output

This signal generated by external logic indicates to the Ignite CPU as to when it is time to complete the current bus
transfer cycle. This active High signal is sampled by the rising edge of the CPU clock. If there is a pending bus cycle,
then the CPU will immediately start the next transfer on the rising edge of the CPU clock.

Memory Fault *FAULTB, input

If the pin *faultb is asserted (active low), and memory fault traps are enabled, following a request at the beginning
of a bus transfer cycle, then the CPU will immediately transfer execution to the memory fault trap location to handle
the memory fault. This signal is provided by an external logic implementing a memory manager function. Memory
fault traps are enabled by bit 27 of the mode register. The address and write-data that caused the memory fault saved
in internal registers and are retrieved allowing memory fault recovery. The *faultb going active has a required
setup time and should also be driven inactive after the invalid memory cycle completes. The memory manager
generating the *faultb signal must also generate dval to complete the current cycle.

If *faultb is asserted, and memory fault traps are not enabled, operation will be unaffected, provided that
*faultb is removed in a timely manner.

The *faultb signal might be generated by external logic because of either memory errors detected by parity
circuitry or memory non-availability caused by memory page swapping.

Bus Interface

The bus interface for the Ignite CPU employs a very simple request/acknowledge protocol that has been the traditional
mechanism for most embedded processors.

There are two modes of bus transaction that are intended for single and multiple access mode of access respectively.

The Ignite processor IP is a completely synchronous design. All timing information will be stated with respect to the
clock edge, period or duty cycle of the clock that it is operated from.

Timing Information

The timing specifications for the part as mentioned in the IP data sheet were derived post synthesis using TSMC library
of parts for the 0.18-micron technology, and will be different for other technologies.

All output drivers will be specific to the user implementation.

All inputs have a setup time with respect to the clock input of the device. All outputs have a clock to output time delay
referenced to the clock input of the device.

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

81

Request

Data Valid

Data

Write

CPU Clk

Valid Data Valid Data

Ignite CPU Read

CPU State Bus Idle Read X fer Read X ferBus Idle Bus Idle

Address Valid A ddress Valid A ddress

1

3

5

2

4

6

7

8

No Symbol Description Min Typical Max Notes
1 t_addrout Address valid out

from clock rise
TCHOH

Note 3 or
 TCHOL

Note 4
 Foundry library

specific Note2
2 t_addrinval Address invalid

from clock rise
TCHOH

Note 3 or
 TCHOL

Note 4
 Foundry library

specific Note2
3 t_reqvalout Request valid out

from clock rise
TCHOH

Note 3 Foundry library
specific Note2

4 t_reqinval Request invalid
from clock rise

TCHOL
Note 4

5 t_rdatasetup Read Data setup TIOOCK
Note 5

6 t_rdatahold Read Data Hold TIOHLDCK
Note 6

7 t_dvalsetup Data valid setup
to clock rise

0.6T_clkperiod Note1 Meeting Min
parameter assures 1
cycle memory
access Note1

8 t_dvalhold Data valid Hold TIOHLDCK
Note 6

Table 42 CPU Read Timing Parameters

Notes:
Note1 T_clkperiod refers to the clock period of the CPU clock. This is an absolutely critical parameter to meet for 1

cycle memory access
Note 2 These parameters in this row are defined by the Foundry provided library for a specific semiconductor geometry

and process
Note 3 This is the delay as specified by the component library for clock High to output High
Note 4 This is the delay as specified by the component library for clock High to output Low
Note 5 This is the Setup time before the clock active signal as specified by component library
Note 6 This is the Hold time after the clock active signal as specified by component library

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

 82

Request

Data Valid

Data

Write

CPU Clk

Valid Data Valid Data

Ignite CPU Write

CPU State Bus Idle Write Xfer Write Xfer

Address Valid Address Valid Address

Bus Idle Bus Idle

10

11

7

12

13

8

No Symbol Description Min Typical Max Notes
10 t_dataout Data valid out

from clock rise
TCHOH

Note 3 or
 TCHOL

Note 4
 Foundry library

specific Note2
12 t_dataz Data tri-state from

clock rise
TIOCKP

Note 3+ TIOTHZ
Note7 Foundry library

specific Note2
11 t_wrtvalout Write valid out

from clock rise
TCHOH

Note 3 Foundry library
specific Note2

13 t_wrtinval Write invalid
from clock rise

TCHOL
Note 4

7 t_dvalsetup Data valid setup
to clock rise

0.6T_clkperiod Note1 Meeting Min parameter
assures 1 cycle memory
access Note1

8 t_dvalhold Data valid Hold TIOHLDCK
Note 6

Table 43 CPU Write Timing Parameters

Notes:
Note1 T_clkperiod refers to the clock period of the CPU clock. This is an absolutely critical parameter to meet for 1

cycle memory access
Note 2 These parameters in this row are defined by the Foundry provided library for a specific semiconductor geometry

and process
Note 3 This is the delay as specified by the component library for clock High to output High
Note 4 This is the delay as specified by the component library for clock High to output Low
Note 5 This is the Setup time before the clock active signal as specified by component library
Note 6 This is the Hold time after the clock active signal as specified by component library
Note7 This is the input to high-impedance delay as specified by component library

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

83

CPU Clk

Request

Address

Data Valid

Data

Write

Ignite CPU Multiple Access Read

CPU State

New AddressValid Address

Read Xfer

Valid Data Valid Data Valid Data

New Address

Read Xfer Read XferIdle Idle

CPU Clk

Request

Address

Data Valid

Data

Write

Valid Data

New Address

Ignite CPU Multiple Access Write

New Data

Valid Address

CPU State Idle Write Xfer

New Address

New Data

Write Xfer Write Xfer Bus Idle

IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual

 84

Request

CPU Clk

Ignite Memory Fault

CPU State Bus Idle Read/Write Xfer Bus Idle Bus Idle

Address INvalid Address Vector Address

Data Valid

7

8

FAULTB*
7

8

Read Xfer for FAULTB Vector

No Symbol Description Min Typical Max Notes
7 t_dvalsetup Data valid setup

to clock rise
0.6T_clkperiod Note1 Meeting Min

parameter assures 1
cycle memory
access Note1

8 t_dvalhold Data valid Hold TIOHLDCK
Note 6

Table 44 Memory Fault Operation Timing Parameters

Notes:
Note1 T_clkperiod refers to the clock period of the CPU clock. This is an absolutely critical parameter to meet for 1

cycle memory access
Note 6 This is the Hold time after the clock active signal as specified by component library

	IMPORTANT NOTICE
	Disclaimer
	Critical Applications Policy
	Purpose
	Overview
	Microprocessor Unit
	Address Space
	Registers and Stacks
	Programming Mode
	Instruction Set Overview
	ALU Operations
	Branches, Skips, and Loops

	Literals
	Data Movement
	Loads and Stores
	Stack Data Management
	Stack Cache Management
	Byte and Word Operations
	Floating-Point Math
	Debugging Features
	On-Chip Resources
	Miscellaneous
	Stacks and Stack Caches
	Stack-Page Exceptions
	Stack Initialization
	Stack Depth
	Exceptions and Trapping
	Floating-Point Math Support
	Data Formats
	Status and Control Bits
	GRS Extension Bits
	Rounding
	Exceptions
	Hardware Debugging Support
	Breakpoint
	Single-Step
	CPU Reset
	Interrupts
	Bit Inputs
	Bit Outputs
	Posted-Write
	On-Chip Resources
	Instruction Reference
	ANS Forth Word Equivalents
	Java Byte Code Equivalents
	Interrupt Controller
	Resources
	Operation
	Interrupt Request Servicing
	Recognizing Interrupts
	ISR Processing
	Bit Inputs
	Resources
	In˜put Sam˜pling
	Zero Persistent
	Interrupt Usage
	General-Purpose Bits
	CPU Usage
	B
	Bit Outputs
	Resources
	On-Chip Resource Registers
	Address

	Bus Interface
	Posted Writes
	When asserted active (low), completely initializes the CPU. When de-asserted, CPU execution begins at the address 0x80000008. This signal is internally synchronized with the CPU clock.
	The *Reset signal must stay activate for at least 4 clock cycles for the processor to reach its quiescent state.
	Timing Information

