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Purpose 
 
This document describes the IGNITE processor. 

PTSC’s IGNITE is a low-power, low-cost, stack-
architecture processor targeted specifically for embedded 
applications. As a stack-architecture processor, the 
IGNITE processor is ideal for applications that must run 
Java™ at native speeds. These include laser printers, 
ignition controllers, network routers, personal digital 
assistants, set-top cable controllers, video games, pagers, 
cell phones, and many other applications. But since C++ 
is semantically similar to Java, the IGNITE processor also 
runs C and C++ efficiently, as well as stack-architecture 
languages such as Forth and Postscript. 

This data book provides the information required to 
design products that use the IGNITE processor CPU. 

 
Overview 
 

The IGNITE processor is an implementation of the 
ShBoom™ microprocessor architecture. In its full 
implementation it is a highly integrated 32-bit RISC 
processor that executes at a peak performance of one 
instruction per CPU-clock cycle. The CPU is designed 
specifically for use in those embedded applications for 
which power consumption, CPU performance, and system 
cost are deciding selection factors. 

The IGNITE processor CPU instruction set is hard-
wired, allowing most instructions to execute in a single 
cycle, without the use of pipelines or superscalar architec-
ture. A "flow-through" design allows the next instruction 
to start before the prior instruction completes, thus 
increasing performance. 

The IGNITE processor contains 52 general-purpose 
registers, including 16 global data registers, an index 
register, a count register, a 16-deep addressable 
register/return stack, and an 18-deep operand stack. Both 
stacks contain an index register in the top element, are 
cached on chip, and, when required, automatically spill to 
and refill from external memory. The stacks minimize the 
data movement typical of register-based architectures, and 
also minimize memory accesses during procedure calls, 
parameter passing, and variable assignments. Additionally, 
the CPU contains a mode/status register, two stack 
pointers, and 7 locally addressed on-chip resource 
registers for I/O, control, configuration, and status. 

Run Java at Native Speed: The stack architectures 
of the IGNITE processor and the Java Virtual Machine 
are very similar. This results in only a relatively simple 
byte code translator (20K) being required to produce 
executable native code from Java byte code, rather than a 
full Just-in-Time (JIT) compiler (200–400K) as is 
required for common processor architectures. The result is 
much faster initial execution of Java programs and 
significantly smaller memory requirements. Additionally, 
hundreds of kilobytes of memory are saved due to the 
reduced size of the translator itself. 

Multiple Language Support: Most modern 
languages are implemented on a stack model. The features 
that allow the IGNITE processor to run Java efficiently 
apply similarly to other languages such as C, C++, Forth 
and Postscript. 

Zero-Operand Architecture: Many RISC architec-
tures waste valuable instruction space—often 15 bits or 
more per instruction—by specifying three possible 
operands for every instruction. Zero-operand (stack) 
architectures eliminate these operand bits, thus allowing 
much shorter instructions—typically one-fourth the size—
and thus a higher instruction-execution bandwidth and 
smaller program size. Stacks also minimize register saves 
and loads within and across procedures, thus allowing 
shorter instruction sequences and faster-running code. 

Fast, Simple Instructions: Instructions are less 
complex to decode and execute than those of conventional 
RISC processors, allowing the IGNITE processor to issue 
and complete instructions in a single CPU-clock cycle, as 
often as every CPU-clock cycle. 

Four-Instruction Buffer: Using 8-bit opcodes, the 
CPU obtains up to four instructions from memory each 
time an instruction fetch or pre-fetch is performed. These 
instructions can be repeated without rereading them from 
memory. This maintains high performance when 
connected directly to DRAM, without the expense of a 
cache. 

Local and Global Registers: Local and global 
registers minimize the number of accesses to data 
memory. The local-register stack automatically caches up 
to sixteen registers, and the operand stack up to eighteen 
registers. As stacks, any allocated data space efficiently 
nests and unnests across procedure calls. The sixteen 
global registers provide storage for shared data. 

Posted Write: Decouples the processor from data 
writes to memory, allowing the processor to continue 
executing after a write is posted. 
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Fully Static Design: A fully static design allows 
running the clock from DC up to rated speed. Lower clock 
speeds can be used to drastically cut power consumption. 

Hardware Debugging Support: Both breakpoint 
and single-step capability aid in debugging programs. 

Floating-Point Support: Special instructions imple-
ment efficient single- and double-precision IEEE floating-

point arithmetic. 
Interrupt Controller: Supports up to eight 

prioritized levels with interrupt responses as fast as eight 
CPU-clock cycles. 

Eight Bit Inputs and Eight Bit Outputs: I/O bits 
are available for CPU application use, thus reducing the 
requirement for external logic.
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Figure 1 CPU Block Diagram 
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Microprocessor Unit 
 

The CPU supports the ShBoom architectural 
philosophy of simplification and efficiency of use through 
its basic design in several interrelated ways. 

Whereas most RISC processors use pipelines and 
superscalar execution to execute at high clock rates, the 
IGNITE processor uses neither. By having a simpler arc-
hitecture, the IGNITE processor issues and completes 
most instructions in a single clock cycle. There are no 
pipelines to fill and none to flush during changes in 
program flow. Though more instructions are sometimes 
required to perform the same procedure in the IGNITE 
processor, the CPU operates at a higher clock frequency 
than other processors of similar silicon size and 
technology, thus giving comparable performance at 
significantly reduced cost. 

 
A microprocessor's performance is often limited by 

how quickly it can be fed instructions from memory. The 
CPU reduces this bottleneck by using 8-bit instructions so 
that up to four instructions (an instruction group) can be 
obtained during each memory access. Each instruction 
typically takes one CPU-clock cycle to execute, thus 
requiring four CPU-clock cycles to execute the instruction 
group. Because a memory access can complete in four (or 
even fewer) CPU-clock cycles, the next instruction group 
can be available when execution of the previous group 
completes. This makes it possible to feed instructions to 
the processor at maximum instruction-execution 
bandwidth without the cost and 
complexity of an instruction 
cache. 

 
The zero-operand (stack) 

architecture makes 8-bit 
instructions possible. The stack 
architecture eliminates the 
requirement to specify source 
and destination operands in 
every instruction. By not using 
opcode bits on every instruction 
for operand specification, a 
much greater bandwidth of 
functional operations—up to 
four times as high—is possible. 
Table 1 depicts an example 

IGNITE processor CPU instruction sequence that 
demonstrates twice the typical RISC CPU instruction 
bandwidth. The instruction sequence on the IGNITE 
processor requires one-half the instruction bits, and the 
uncached performance benefits from the resulting increase 
in instruction bandwidth. 

 
Table 1 Instruction Bandwidth Comparison  
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Figure 2 CPU Registers 

g5 = g1 - (g2 + 1) + g3 - (g4 * 2)

Typical RISC MPU IGNITE CPU

push g1
push g2

add #1,g2,g5 inc #1

sub g1,g5,g5 sub

push g3
add g5,g3,g5 add

push g4
shl g4,#1,temp shl #1

sub
sub g5,temp,g5 pop g5

20 bytes 10 bytes

Example of twice the instruction
bandwidth available on the IGNITE CPU
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Figure 3 CPU Memory Map 
 
Stack CPUs are thus simpler than register-based 

CPUs, and the IGNITE CPU has two hardware stacks to 
take advantage of this: the operand stack and the local-
register stack. The simplicity is widespread and is 
reflected in the efficient ways stacks are used during 
execution. 

The ALU processes data from primarily one source of 
inputs—the top of the operand stack. The ALU is also 
used for branch address calculations. Data bussing is thus 
greatly reduced and simplified. Intermediate results 
typically “stack up” to unlimited depth and are used 
directly when needed, rather than requiring specific 
register allocations and management. The stacks are 
individually cached and spill and refill automatically, 

eliminating software overhead for stack manipulation 
typical in other RISC processors. Function parameters are 
passed on, and consumed directly off of, the operand 
stack, eliminating the need for most stack frame 
management. When additional local storage is required, 
the local-register stack supplies registers that efficiently 
nest and unnest across functions. As stacks, the stack 
register spaces are only allocated for data actually stored, 
maximizing storage utilization and bus bandwidth when 
registers are spilled or refilled—unlike architectures using 
fixed-size register windows. Stacks speed context 
switches, such as interrupt servicing, because registers do 
not need to be explicitly saved before use—additional 
stack space is allocated as required. The stacks thus 
reduce the number of explicitly addressable registers 
otherwise required, and speed execution by reducing data 
location specification and movement. Stack storage is 
inherently local, so the global registers supply non-local 
register resources when required. 

 
 
 
Eight-bit opcodes are too small to contain much 

associated data. Additional bytes are necessary for 
immediate values and branch offsets. However, variable-
length instructions usually complicate decoding and 
complicate and lengthen the associated data access paths. 
To simplify the problem, byte literal data is taken only 
from the rightmost byte of the instruction group, 
regardless of the location of the byte literal opcode within 
the group. Similarly, branch offsets are taken as all bits to 
the right of the branch opcode, regardless of the opcode 
position. For 32-bit literal data, the data is taken from a 
subsequent memory cell. These design choices ensure that 
the required data is always right-justified for placement on 
the internal data busses, reducing interconnections and 
simplifying and speeding execution. 

Since most instructions decode and execute in a 
single clock cycle, the same ALU that is used for data 
operations is also available, and is used, for branch 
address calculations. This eliminates an entire ALU often 
required for branch offset calculations. 

Rather than consume the chip area for a single-cycle 
multiply-accumulate unit, the higher clock speed of the 
CPU reduces the execution time of conventional multi-
cycle multiply and divide instructions. For efficiently 
multiplying by constants, a fast multiply instruction 
multiplies only by the specified number of bits. 
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Rather than consume the chip area for a barrel shifter, 
the counted bit-shift operation is “smart” to first shift by 
bytes, and then by bits, to minimize the cycles required. 
The shift operations can also shift double cells (64 bits), 
allowing bit-rotate instructions to be easily synthesized. 

Although floating-point math is useful, and 
sometimes required, it is not heavily used in embedded 
applications. Rather than consume the chip area for a 
floating-point unit, CPU instructions to efficiently perform 
the most time-consuming aspects of basic IEEE floating-
point math operations, in both single and double 
precision, are supplied. The operations use the “smart” 
shifter to reduce the cycles required. 

Byte read and write operations are available, but 
cycling through individual bytes is slow when scanning 
for byte values. These types of operations are made more 
efficient by instructions that operate on all of the bytes 
within a cell at once. 
 
Address Space 
 
 The CPU fully supports a linear four-gigabyte address 
space for all program and data operations.  
 

 

 
31 07 8 15 16 23 24 

b yt e d at a

cell d at a

0 1 2 3 

Bit

Byt e 

Big Endian Byt e  Order

 
 Figure 4 Byte Order 

 
Several instructions or operations expect addresses 

aligned on four-byte (cell) boundaries. These addresses 
are referred to as cell-aligned. Only the upper 30 bits of 
the address are used to locate the data; the two least-
significant address bits are ignored but appear externally. 
Within a cell, the high order byte is located at the low byte 
address. The next lower-order byte is at the next higher 
address, and so on. For example, the value 0x12345678 
would exist at byte addresses in memory, from low to high 
address, as 12 34 56 78. See Figure 4. 
 

Registers and Stacks 
 
 The register set contains 52 general-purpose registers, 
a mode/status register, and two stack pointers. See Figure 
2. It also contains 7 local address-mapped on-chip 
resource registers used for I/O, configuration, and status.  

The operand stack contains eighteen registers and 
operates as a push-down stack, with direct access to the 
top three registers (s0–s2). These registers and the 
remaining registers (s3–s17) operate together as a stack 
cache. Arithmetic, logical, and data-movement 
operations, as well as intermediate result processing, are 
performed on the operand stack. Parameters are passed 
to procedures and results are returned from procedures 
on the stack, without the requirement of building a stack 
frame or necessarily moving data between other 
registers and the frame. As a true stack, registers are 
allocated only as required, resulting in efficient use of 
available storage. The external operand stack is 
addressed by register sa. 

The local-register stack contains sixteen registers 
and operates as a push-down stack with direct access to 
the first fifteen registers (r0–r14). Theses registers and 
the remaining register (r15) operate together as a stack  
cache. As a stack, they are used to hold subroutine 
return addresses and automatically nest local-register 
data. The external local-register stack is addressed by 
register la.    
 Both cached stacks automatically spill to memory 
and refill from memory, and can be arbitrarily deep. 
Additionally, s0 and r0 can be used for memory access. 
See Stacks and Stack Caches. 

The use of stack-cached operand and local registers 
improve performance by eliminating the overhead 
required to save and restore context (when compared to 
processors with only global registers available). This 
allows for very efficient interrupt and subroutine 
processing. 

In addition to the stacks are sixteen global registers 
and three other registers. The global registers (g0–g15) 
are used for data storage, and as operand storage for the 
CPU multiply and divide instructions (g0). Remaining 
are mode, which contains mode and status bits; x, which 
is an index register (in addition to s0 and r0); and ct, 
which is a loop counter and also participates in floating-
point operations. 
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Programming Mode 
 
 For those familiar with the Java Virtual Machine, 
American National Standard Forth (ANS Forth), 
Postscript, or Hewlett-Packard calculators that use 
postfix notation, commonly known as Reverse Polish 
Notation (RPN), programming the IGNITE  CPU will 
in many ways be very familiar. 

A CPU architecture can be classified as to the 
number of operands specified within its instruction 
format. Typical 16-bit and 32-bit CISC and RISC CPUs 
are usually two- or three-operand architectures, whereas 
smaller microcontrollers are often one-operand 
architectures. In each instruction, two- and three-
operand architectures specify a source and destination, 
or two sources and a destination, whereas one-operand 
architectures specify only one source and have an 
implicit destination, typically the accumulator. 
Architectures are also usually not pure. For example, 
one-operand architectures often have two-operand 
instructions to specify both a source and destination for 
data movement between registers. 

The IGNITE CPU is a zero-operand architecture, 
known as a stack computer. Operand sources and 
destinations are assumed to be on the top of the operand 
stack, which is also the accumulator. An operation such 
as add uses both source operands from the top of the 
operand stack, adds them, and returns the result to the 
top of the operand stack, thus causing a net reduction of 
one in the operand stack depth. See Figure 5. 
 Most ALU operations behave similarly, using two 
source operands and returning one result operand to the 
operand stack. A few ALU operations use one source 
operand and return one result operand to the operand 
stack. Some ALU and other operations also require a non- 
stack register, and a very few do not use the operand stack 
at all. 

Non-ALU operations are also similar. Loads (memory 
reads) either use an address on the operand stack or in a 
specified register, and place the retrieved data on the 
operand stack. Stores (memory writes) use either an 
address on the operand stack or in a register, and use data 
from the operand stack. Data movement operations push 
data from a register onto the operand stack, or pop data 
from the stack into a register. 

 

Op erand   St ack

a
b  
c
d  
e 
f  

s0
s1
s2
s3
s4
s5
. 
. 

a +  
c 
d  
e 
f  

s0 
s1 
s2 
s3 
s4 
s5 
.
.

add 

      Figure 5 Add Execution Example 
 

Once data is on the operand stack it can be used for 
any instruction that expects data there. The result of an 
add, for instance, can be left on the stack indefinitely, 
until used by a subsequent instruction. See Table 1. 
Instructions are also available to reorder the data in the 
top few cells of the operand stack so that prior results can 
be accessed when required. Data can also be removed 
from the operand stack and placed in local or global 
registers to minimize or eliminate later reordering of stack 
elements. Data can even be popped from the operand 
stack and restacked by pushing it onto the local-register 
stack. 

Computations are usually most efficiently performed 
by executing the most deeply nested computations first, 
leaving the intermediate results on the operand stack, and 
then combining the intermediate results as the 
computation unnests. If the nesting of the computation is 
complex, or if the intermediate results are to be used some 
time later after other data would have been added to the 
operand stack, the intermediate results can be removed 
from the operand stack and stored in global or local 
registers. 
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Global registers are used directly and maintain their 
data indefinitely. Local registers are registers within the 
local-register stack cache and, as a stack, must first be 
allocated. Allocation can be performed by popping data 
from the operand stack and pushing it onto the local-
register stack one cell at a time. It can also be preformed 
by allocating a block of uninitialized stack registers at one 
time; the uninitialized registers are then initialized by 
popping data, one cell at a time, into the registers in any 
order. The allocated local registers can be deallocated by 
pushing data onto the operand stack by popping it off of 
the local register stack one cell at a time, and then 
discarding from the operand stack the data that is not 
required. Alternatively, the allocated local registers can be 
deallocated by first saving any data required from the 
registers, and then deallocating a block of registers at one 
time. The method selected depends on the number of 
registers required and whether the data on the operand 
stack is in the required order. 

Registers on both stacks are referenced relative to the 
tops of the stacks and are thus local in scope. What was 
accessible in r0, for example, after one cell has been push 
onto the local-register stack, is accessible as r1; the newly 
pushed value is accessible as r0. 

Parameters are passed to and returned from subrou-
tines on the operand stack. An unlimited number of 
parameters can be passed and returned in this manner. An 
unlimited number of local-register allocations can also be 
made. Parameters and allocated local registers thus 
conveniently nest and unnest across subroutines and 
program basic blocks. 

Subroutine return addresses are pushed onto the 
local-register stack and thus appear as r0 on entry to the 
subroutine, with the previous r0 accessible as r1, and so 
on. As data is pushed onto the stacks and the available 
register space fills, registers are spilled to memory when 
required. Similarly, as data is removed from the stacks 
and the register space empties, the registers are refilled 
from memory as required. Thus from the program’s 
perspective, the stack registers are always available. 

 
Instruction Set Overview 
  

Table 2 lists the CPU instructions; Table 35, page 66, 
and Table 36, page 67, list the mnemonics and opcodes. 
All instructions consist of eight bits, except for those that 
require immediate data. This allows up to four 
instructions (an instruction group) to be obtained on each 
instruction fetch, thus reducing memory-bandwidth 
requirements compared to typical RISC machines with 
32-bit instructions. This characteristic also allows looping 
on an instruction group (a micro-loop) without additional 
instruction fetches from memory, further increasing 
efficiency. Instruction formats are depicted in Figure 6. 
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Table 2 CPU Instruction Set

 
 
 

 

ALU Operations 
 
 Almost all ALU operations occur on the top of the 
operand stack in s0 and, if required, s1. A few operations 
also use g0, ct, or pc. 

Only one ALU status bit, carry, is maintained and is 
stored in mode. Since there are no other ALU status 
bits, all other conditional operations are performed by 
testing s0 on the fly. eqz is used to reverse the zero/non-
zero state of s0. Most arithmetic operations modify 
carry from the result produced out of bit 31 of s0. The 
instruction add pc is available to perform pc-relative 
data references. adda is available to perform address 
arithmetic without changing carry. Other operations 
modify carry as part of the result of the operation. 

s0 and s1 can be used together for double-cell 
shifts, with s0 containing the more-significant cell and 
s1 the less-significant cell of the 64-bit value. Both 
single-cell and double-cell shifts transfer a bit between 
carry and bit 31 of s0. Code depicting single-cell rotates 
constructed from the double-cell shift is given in Table 
4. 

All ALU instruction opcodes are formatted as 8-bit 
values with no encoded fields. 

 
 
 

 
Table 3 ALU Instructions 
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Table 4 Code example: Rotate 

 
Offset Bits 

 
Offset Range in Bytes 

 
3 

 
-16/+12 

 
11 

 
-4096/+4092 

 
19 

 
-1048576/+1048572 

 
27 

 
-268435456/+268435452 

 
Note: 
Encoded offset is in cells. Offset is added to the address of 
the beginning of the cell containing the branch to compute 
the destination address. 
 
Table 5 CPU Branch Ranges 

 
Table 6 Branch, Loop and Skip Instructions 

 

offset 
offset 

offset branch 
branch opcode opcodeopcode

opcodeopcode 
opcode branch 
branch 

push.b opcodeopcode value

opcode push.b opcode value

opcode opcodepush.b value

push.n 

opcodepush.lopcode opcode 

opcodeopcode opcode opcode 

data for first push.l 

data for fourth push.l (if present)

opcodeopcodeopcode opcode 

push long 
(any positions) 

push byte 

push nibble 
(any positions) 

Branches 

Literals 

All 

data for second push.l (if present) 
data for third push.l (if present) 

3-bit offset 
11-bit offset 
19-bit offset 
27-bit offset 

opcode opcode opcode 

 
Figure 6 CPU Instruction Format 
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Branches, Skips, and Loops 
 The instructions br, bz, call and dbr are variable-
length. The three least-significant bits in the opcode and 
all of the bits in the current instruction group to the right 
of the opcode are used for the relative branch offset. See 
Figure 6 and Table 5. Branch destination addresses are 
cell-aligned to maximize the range of the offset and the 
number of instructions that are executed at the destination. 
If an offset is not of sufficient size for the branch to reach 
the destination, the branch must be moved to an 
instruction group where more offset bits are available, or a 
register indirect branch, br [] or call [], can be used. 
Register indirect branches use an absolute byte-aligned 
address from s0. The instruction add pc can be used if a 
computed pc-relative branch is required. 

The mloop_ instructions are referred to as micro-
loops. If specified, a condition is tested, and then ct is 
decremented. If a termination condition is not met, 
execution continues at the beginning of the current 
instruction group. Micro-loops are used to re-execute 
short instruction sequences without re-fetching the 
instructions from memory. See Table 11. 

Other than branching on zero with bz, conditional 
branching is performed with the skip_ instructions. They 
terminate execution of the current instruction group and 
continue execution at the beginning of the next instruction 
group. They can be combined with the br, call, dbr, and ret 
(or other instructions) to create additional flow-of-control 
operations. 

 
 
Literals 
 To maximize opcode bandwidth, three sizes of literals 
are available. The data for four-bit (nibble) literals, with a 
range of -7 to +8, is encoded in the four least-significant 
bits of the opcode; the numbers are encoded as two’s-
complement values with the value 1000 binary decoded as 
+8. The data for eight-bit (byte) literals, with a range of 0–
255, is located in the right-most byte of the instruction 
group, regardless of the position of the opcode within the 
instruction group. The data for 32-bit (long, or cell) 
literals is located in a cell following the instruction group  
 
 

 
in the instruction stream. Multiple push.l instructions in 
the same instruction group access consecutive cells 
immediately following the instruction group. See Figure 
6. 

Table 8 Data Movement Instructions 
 
Data Movement 
 Register data is moved by first pushing the register 
onto the operand stack, and then popping it into the 
destination register. Memory data is moved similarly. See 
Loads and Stores, above. 

The opcodes for the data-movement instructions that 
access gi and ri are 8-bit values with the register number 
encoded in the four least-significant bits. All other data-
movement instruction opcodes are formatted as 8-bit 
values with no encoded fields. 

 

 
Table 9 Load and Store Instructions 

 
Loads and Stores 
 r0 and x support register-indirect addressing and also 
register-indirect addressing with predecrement by four or 

postincrement by four. These modes allow for efficient 
memory reference operations. Code depicting memory 
move and fill operations is given in Table 11. 

Register indirect addressing can also be performed 
with the address in s0. Other addressing modes can be 
implemented using adda. Table 10 depicts the code for a 
complex memory reference operation. 

push.b push.l push.n 

Table 7 Literal Instructions
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The memory accesses depicted in the examples above 
are cell-aligned, with the two least-significant bits of the 
memory addresses ignored. Memory can also be read at 
byte addresses with ld.b [] and written at byte addresses 
using x and replb. Similar operations are available for 16-
bit words. See Byte and Word Operations. 
 

  
Table 10 Code Example: Complex Addressing 
Mode 
 

 
The CPU contains a one-level posted write. This 

allows the CPU to continue executing while the posted 
write is in progress and can significantly reduce execution 
time. Memory coherency is maintained by giving the 
posted write priority bus access over other CPU bus 
requests, thus writes are not indefinitely deferred. In the 
code examples in Table 11, the loop execution overhead is 
zero when using posted writes. Posted writes are enabled 
by setting mspwe in resource register miscc. 

 
 

 
Table 11 Code Example: Memory Move and Fill 
All load and store instruction opcodes are formatted 

as 8-bit values with no encoded fields. 
 

 
 
Stack Data Management 
 Operand stack data is used from the top of the stack 
and is generally consumed when processed. This can 
require the use of instructions to duplicate, discard, or 
reorder the stack data. Data can also be moved to the 
local-register stack to place it temporarily out of the way, 
or to reverse its stack access order, or to place it in a local 
register for direct access. See the code examples in Table 
11. 

 
Table 12 Stack Data Management Instruction 
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If more than a few stack data management 

instructions are required to access a given operand stack 
cell, performance usually improves by placing data in a 
local or global register. However, there is a finite supply 
of global registers, and local registers, at some point, spill 
to memory. Data should be maintained on the operand 
stack only while it is efficient to do so. In general, if the 
program requires frequent access to data in the operand 
stack deeper than s2, that data, or other more accessible 
data, should be placed in directly addressable registers to 
simplify access. 

To use the local-register stack, data can be popped 
from the operand stack and pushed onto the local-register 
stack, or data can be popped from the local-register stack 
and pushed onto the operand stack. This mechanism is 
convenient to move a few cells when the resulting operand 
stack order is acceptable. When moving more data, or 
when the data order on the operand stack is not as desired, 
lframe can be used to allocate or deallocate the required 
local registers, and then the registers can be written and 
read directly. Using lframe also has the advantage of 
making the required local-register stack space available by 
spilling the stack as a continuous sequence of bus transac-
tions, which minimizes the number of RAS cycles 
required when writing to DRAM. The instruction sframe 
behaves similarly to lframe, and is primarily used to 
discard a number of cells from the operand stack. 

All stack data management instruction opcodes are 
formatted as 8-bit values with no encoded fields. 

 
Stack Cache Management 
 Other than initialization, and possibly monitoring of 
overflow and underflow via the related traps, the stack 
caches do not require active management. Several 
instructions exist to efficiently manipulate the caches for 
context switching, status checking, and spill and refill 
scheduling. 

The _depth instructions can be used to determine the 
number of cells in the SRAM part of the stack caches. 
This value can be used to discard the values currently in 
the cache, to later restore the cache depth with _cache, or 
to compute the total on-chip and external stack depth. 

The _cache instructions can be used to ensure either 
that data is in the cache or that space for data exists in the 
cache, so that spills and refills occur at preferential times. 
This allows more control over the caching process and 
thus a greater degree of determinism during the program 
execution process. Scheduling stack spills and refills in 

this way can also improve performance by minimizing the 
RAS cycles required due to stack memory accesses. 

The _frame instructions can be used to allocate a 
block of uninitialized register space at the top of the 
SRAM part of a stack, or to discard such a block of 
register space when no longer required. They, like the 
_cache instructions, can be used to group stack spills and 
refills to improve performance by minimizing the RAS 
cycles required due to stack memory accesses. 

See Stacks and Stack Caches on page 15 for more 
information. 

All stack cache management instruction opcodes are 
formatted as 8-bit values with no encoded fields. 

 

 
 
Byte and Word Operations 
 Bytes can be addressed and read from memory 
directly and can be addressed and written to memory with 
the code depicted in Table 15. Words (16-bit values) are 
handled similarly. 

Instructions are available for manipulating bytes 
within cells. A byte can be replicated across a cell, the 
bytes within a cell can be tested for zero, and a cell can be 
shifted by left or right by one byte. Code examples 
depicting scanning for a specified byte, scanning for a null 
byte, and moving a null-terminated string in cell-sized 
units are given below. 

All byte operation instruction opcodes are formatted 
as 8-bit values with no encoded fields. 
 
 
 
 
 
 

 

 
Table 13 Stack Cache Management Instruction 

 
Table 14 Byte and Word Operation Instructions 
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Table 15 Code Example: Byte Store 

 
Table 16 Code Example: Null-Terminated String 
Move 

 

 
Table 17 Code Example: Null Character Search 
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Table 18 Code Example: Byte Search 

 
 
 
 

 
 Floating-Point Math 
The instructions above are used to implement efficient 
single- and double-precision IEEE floating-point software 
for basic math functions (+, -, *, /), and to aid in the 
development of floating-point library routines. The 
instructions perform primarily the normalization, denor-
malization, exponent arithmetic, rounding and detection of 
exceptional numbers and conditions that are otherwise 

execution-time-intensive when programmed conven-
tionally. See Floating-Point Math Support on page 23. 

All floating-point math instruction opcodes are 
formatted as 8-bit values with no encoded fields. 
 

 
Table 20 Debugging Instruction 
 

Debugging Features 
 Each of these instructions signals an exception and 
traps to an application-supplied execution-monitoring 
program to assist in the debugging of programs. See 
Debugging Support. 

Both debugging instruction opcodes are formatted as 
8-bit values with no encoded fields. 

 
On-Chip Resources 
 These instructions allow access to the on-chip 
peripherals, status registers, and configuration registers. 
All registers can be accessed with the ldo [] and sto [] 
instructions. The first six registers each contain eight bits, 
which are also bit addressable with ldo.i [] and sto.i []. 
See On-Chip Resource Registers. 

All on-chip resource instruction opcodes are 
formatted as 8-bit values with no encoded fields. 
 

All on-chip resource instruction opcodes are 
formatted as 8-bit values with no encoded fields. 
 

 
Table 19 Floating Point Math Instruction 

 
Table 21 On-Chip Resources Instruction 

 
Table 22 Miscellaneous Instructions 
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Miscellaneous 
 The disable- and enable-interrupt instructions are the 
only system control instructions; they are supplied to 
make interrupt processing more efficient. Other system 
control functions are performed by setting or clearing bits 
in mode, or in an on-chip resource register. The 
instruction split separates a 32-bit value into two cells, 
each containing 16 bits of the original value. 

All miscellaneous instruction opcodes are formatted 
as 8-bit values with no encoded fields. 
 
Stacks and Stack Caches 
 
 The stack caches optimize use of the stack register 
resources by minimizing the overhead required for the 
allocation and saving of registers during programmed or 
exceptional context switches (such as call subroutine 
execution and trap or interrupt servicing). 

The local-register stack consists of an on-chip 
SRAM array that is addressed to behave as a conven-
tional last-in, first-out queue. Local registers r0–r15 are 
addressed internally relative to the current top of stack. 
The registers r0–r14 are individually addressable and are 
always contiguously allocated and filled. If a register is 
accessed that is not in the cache, all the lower-ordinal 
registers are read in to ensure a contiguous data set. 

 
 
The operand stack is constructed similarly, with the 

addition of two registers in front of the SRAM stack 
cache array to supply inputs to the ALU. These registers 
are designated s0 and s1, and the SRAM array is 
designated s2–s17. Only registers s0, s1 and s2 are 
individually addressable, but otherwise the operand stack 
behaves similarly to the local-register stack. Whereas the 
SRAM array, s2–s17, can become “empty” (see below), 
s0 and s1 are always considered to contain data. 
 

The stack caches are designed to always allow the 
current operation to execute to completion before an 
implicit stack memory operation is required to occur. No 
instruction explicitly pushes or explicitly pops more than 
one cell from either stack (except for stack management 
instructions). Thus to allow execution to completion, the 
stack cache logic ensures that there is always one or more 
cells full and one or more cells empty in each stack cache 
(except immediately after reset, see Stack Initialization) 
before instruction execution. If, after the execution of an 

instruction, this is not the case on either stack, the 
corresponding stack cache is automatically spilled to 
memory or refilled from memory to reach this condition 
before the next instruction is allowed to execute. 
Similarly, the instructions _cache, _frame, pop sa, and 
pop la, which explicitly change the stack cache depth, 
execute to completion, and then ensure the above 
conditions exist. 

Thus r15 or s17 can be filled by the execution of an 
instruction, but they are spilled before the next instruction 
executes. Similarly, r0 and s2 can be emptied by the 
execution of an instruction, but they are filled before the 
next instruction executes. 

The stacks can be arbitrarily deep. When a stack 
spills, data is written at the address in the stack pointer 
and then the stack pointer is decremented by four 
(postdecremented stack pointer). Conversely, when a 
stack refills, the stack pointer is incremented by four, and 
then data is read from memory (preincremented stack 
pointer). The stack pointer thus points to the next location 

masked addr = 0x380

masked addr = 0x200

masked addr = 0x000

masked addr = addr AND 0x380

Boundary Region

Boundary Region

Middle Region 

0x…000 

0x…200 

0x…3FF

1K Page 
Address

0x…380 

0x…27F

0x…07F

Figure 7 Stack Exception Region 
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to write and the stacks grow from higher to lower memory 
addresses. The stack pointer for the operand stack is sa, 
and the stack pointer for the local-register stack is la. 

Since the stacks are dynamically allocated memory 
areas, some amount of planning or management is 
required to ensure the memory areas do not overflow or 
underflow. The simplest is to allocate a sufficiently large 
memory area so that overflow conditions won’t occur. In 
this case, a correctly written program does not produce 
underflow. Alternatively, stack memory can be 
dynamically allocated or monitored through the use of 
stack-page exceptions. 
 
Stack-Page Exceptions 
 Stack-page exceptions occur on any stack-cache 
memory access near the boundary of any 1024-byte 
memory page to allow overflow and underflow protection 
and stack memory management. To prevent thrashing 
stack-page exceptions near the margins of the page 
boundary areas, once a boundary area is accessed and the 
corresponding stack-page exception is signaled, the stack 
pointer must move to the middle region of the stack page 
before another stack-page exception can be signaled. See 
Figure 9. 

Stack-page exceptions enable stack memory to be 
managed by allowing stack memory pages to be 
reallocated or relocated when the edges of the current 
stack page are approached. The boundary regions of the 
stack pages are located 32 cells from the ends of each 
page to allow even a _cache or _frame instruction to 
execute to completion and to allow for the corresponding 
stack cache to be emptied to memory. Using the stack-
page exceptions requires that only 2 KB of addressable 
memory be allotted to each stack at any given time: the 
current stack page and the page near the most recently 
encroached boundary. 

Each stack supports stack-page overflow and stack-
page underflow exceptions. These exception conditions 
are tested against the memory address that is accessed 
when the corresponding stack spills or refills between the 
execution of instructions. mode contains bits that signal 
local-stack overflow, local-stack underflow, operand stack 
overflow and operand stack underflow, as well as the 
corresponding trap enable bits. 

The stack-page exceptions have the highest priority of 
all of the traps. As this implies, it is important to consider 
carefully the stack effects of the stack trap handler code so 
that stack-page boundaries are not be violated during its 

execution. Additionally, a memory fault must not occur 
during a stack page access. The stack page exceptions are 
intended to be used to ensure valid stack pages can always 
be accessed without memory faults. 

Since stack-page exceptions can occur on any stack 
spill or refill, usage of certain stack-cache management 
instructions (_depth and _cache) must be modified to 
ensure the expected result. A stack-page exception can 
occur after the stack-cache management instruction and 
thus modify the cache state. To prevent this, the 
instruction must complete without a stack spill or refill 
that would cause a stack-page exception. This can be 
accomplished by either causing a similar stack effect prior 
to executing the instruction, or by executing the 
instruction twice in immediate sequence. See the supplied 
stack management code examples in this section. 

 

 
 

Table 23 Code Example: Stack Initialization 
 
Stack Initialization 
 After CPU reset both of the CPU stacks should be 
considered uninitialized until the corresponding stack 
pointers are loaded, and this should be one of the first 
operations performed by the CPU. 

After a reset, the stacks are abnormally empty. That 
is, r0 and s2 have not been allocated, and are allocated on 
the first push operation to, or stack pointer initialization 
of, the corresponding stack. However, popping the pushed 
cell causes that stack to be empty and require a refill. The 
first pushed cell should therefore be left on that stack, or 
the corresponding stack pointer should be initialized, 
before the stack is used further. See Table 23. 
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Stack Depth 
 The total number of cells on each stack can readily be 
determined by adding the number of cells that have spilled 
to memory and the number of cells in the on-chip caches. 
See Table 24. 
 
 

 

 
Table 25 Code Example: Save Context 
 
 
Stack Flush and Restore 
 When performing a context switch, it is necessary 
to spill the data in the stack caches to memory so that 
the stack caches can be reloaded for the new context.   

Table 24 Code Example: Stack Depth 
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Attention must be given to ensure that the parts 

of the  
stack caches that are always maintained on-chip, r0 
and s0–s2, are forced into the spillable area of the 
stack caches so that they can be written to memory. 
Code examples are given for context switches that 
include flushing and restoring the caches in Table 25 
and Table 26, respectively. 
 
Exceptions and Trapping 
 
 Exception handling is precise and is managed by 
trapping to executable-code vectors in low memory. 
Each 32-bit vector location can contain up to four 
instructions. This allows servicing the trap within 
those four instructions or branching to a longer trap 
routine. Traps are prioritized and nested to ensure 
proper handling. The trap names and executable 
vector locations are shown in Figure 3. 
 

 
Table 26 Code Example: Restore Context 
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Table 27 Traps Dependent on System State 
 
An exception is said to be signaled when the defined 

conditions exist to cause the exception. If the trap is 
enabled, the trap is then processed. Traps are processed by 
the trap logic, which causes a call subroutine to the 
associated executable-code-vector address. When multiple 
traps occur concurrently, the lowest-priority trap is 
processed first, but before the executable-code vector is 
executed, the next-higher-priority trap is processed, and so 
on, until the highest-priority trap is processed. The 
highest-priority trap’s executable-code vector then 
executes. The nested executable-code-vector return 

addresses unnest as each trap handler executes ret, thus 
producing the prioritized trap executions. 

Interrupts are disabled during trap processing and 
nesting, until an instruction that begins in byte one of an 
instruction group is executed. Interrupts do not nest with 
the traps since their request state is maintained in the 
INTC registers. 

Table 28 lists the priorities of each trap. Traps that 
can occur explicitly due to the data processed or instruc-
tion executed are listed in Table 29. Traps that can occur 
due to the current state of the system, concurrently with 
the traps in Table 29, are listed in Table 27. 

 
 
 

 
Table 28 Trap Priorities 
 

 

 
Stack Depth 

Change 
 
Operand 

Stack 

 
Local-

Register 
Stack 

 
Traps 

 
+n 

 
0 

 
Operand Stack Overflow 

 
–n 

 
0 

 
Operand Stack Underflow 

 
0 

 
+1 

 
Local Stack Overflow 

 
0 

 
–1 

 
Local Stack Underflow 

 
+1 

 
-n 

 
Local Stack Underflow 
Operand Stack Overflow 
Local Stack Underflow and 
Operand Stack Overflow 

 
–1 

 
+n 

 
Local Stack Overflow 
Operand Stack Underflow 
Local Stack Overflow and Op-
erand Stack Underflow 

 
–1 

 
–n 

 
Local Stack Underflow 
Operand Stack Underflow 
Local Stack Underflow and 
Operand Stack Underflow 

 
Notes: 
1. +n > 0, –n < 0 
2. If the instruction reads or writes memory or if a posted 
write is in progress, a memory fault can also occur. 
3. If the instruction is single-stepped, a single-step trap also 
occurs. 
4. If any trap occurs, a local-register stack overflow could 
also occur. 
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Table 29 Traps Independent of System State 
 

 
Floating-Point Math Support 
 The CPU supports single-precision (32-bit) and 
double-precision (64-bit) IEEE floating-point math 
software. Rather than a floating-point unit and the silicon 
area it would require, the CPU contains instructions to 
perform most of the time-consuming operations required 
when programming basic floating-point math operations. 
Existing integer math operations are used to supply the 
core add, subtract, multiply, and divide functions, while 
special instructions are used to efficiently manipulate the 
exponents and detect exception conditions. Additionally, a 
three-bit extension to the top one or two stack cells 
(depending on the precision) is used to aid in rounding 
and to supply the required precision and exception 
signaling operations. 

 

exp onen sign if ican
31 30 23 22 0

exp onen sign if icand  
31 30 0 

sign if icand  
31 0 

20 19 

Single Precision  

Double Precision  

h id den  sign 

sign  h id den  

 
Figure 8 Floating-Point Number Formats 

 
Data Formats 
 Though single- and double-precision IEEE formats 
are supported, from the perspective of the CPU, only 32-
bit values are manipulated at any one time (except for 
double shifting). See Figure 8. The CPU instructions 
directly support the normalized data formats depicted. 
The related denormalized formats are detected by testexp 
and fully supportable in software. 
Status and Control Bits 
 mode contains 13 bits that set floating-point 
precision, rounding mode, exception signals, and trap 
enables. See Figure 9. 

 
Table 30 GRS Extension Bit Manipulation 
Instructions 
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GRS Extension Bits 
 To maintain the precision required by the IEEE 
standard, more significand bits are required than are held 
in the IEEE format numbers. These extra bits are used to 
hold bits that have been shifted out of the right of the 
significand. They are used to maintain additional 
precision, to determine if any precision has been lost 
during processing, and to determine whether rounding 
should occur. The three bits appear in mode so they can be 
saved, restored and manipulated. Individually, the bits are 
named guard_bit, round_bit and sticky_bit. Several 
instructions manipulate or modify the bits. See Table 30. 

When denorm and normr shift bits into the GRS 
extension, the source of the bits is always the least-
significant bits of the significand. In single-precision 
mode the GRS extension bits are taken from s0, and in 
double-precision mode the bits are taken from s1. For 
conventional right shifts, the GRS extension bits always 
come from the least significant bits of the shift (i.e., s0 if a 
single shift and s1 if a double shift). The instruction  
norml is the only instruction to shift bits out of the GRS 
extension; it shifts into s0 in single-precision mode and 
into s1 in double-precision mode. Conventional left shifts 
always shift in zeros and do not affect the GRS extension 
bits. 
 
Rounding 
 The GRS extension maintains three extra bits of 
precision while producing a floating-point result. These 
bits are used to decide how to round the result to fit the 
destination format. If one views the bits as if they were 
just to the right of the binary point, then guard_bit has a 
position value of one-half, round_bit has a positional 
value of one-quarter, and sticky_bit has a positional value 
of one-eighth. The rounding operation selected by 
fp_round_mode uses the GRS extension bits and the sign 
bit of ct to determine how rounding occurs. If guard_bit is 
zero the value of GRS extension is below one-half. If 
guard_bit is one the value of GRS extension is one-half or 
greater. Since the GRS extension bits are not part of the 
destination format they are discarded when the operation 
is complete. This information is the basis for the operation 
of the instruction rnd. 

Sign of 
ct 

 
G 

 
R 

 
S 

 
Action 

 
Round to nearest or even 

 
x 

 
0 

 
x 

 
x 

 
do nothing 

 
x 

 
1 

 
0 

 
0 

 
increment s0, clear bit 0 
of s0 

 
x 

 
1 

 
any 1 

 
increment s0 

 
Round toward negative infinity 

 
0 

 
x 

 
x 

 
x 

 
do nothing 

 
1 

 
0 

 
0 

 
0 

 
do nothing 

 
1 

 
any 1 

 
increment s0 

 
Round toward positive infinity 

 
0 

 
0 

 
0 

 
0 

 
do nothing 

 
0 

 
any 1 

 
increment s0 

 
1 

 
x 

 
x 

 
x 

 
do nothing 

 
Round toward zero 

 
x 

 
x 

 
x 

 
x 

 
do nothing 

Table 31 Rounding Mode Action 
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Table 32 Code Example: Floating-Point Multiply 

 
Most rounding adjustments by rnd involve doing 

nothing or incrementing s0. Whether this is rounding 
down or rounding up depends on the sign of the floating-
point result that is in ct. If the GRS extension bits are non-
zero, then doing nothing has the effect of “rounding 
down” if the result is positive, and “rounding up” if the 
result is negative. Similarly, incrementing the result has 
the effect of “rounding up” if the result is positive and 
“rounding down” if the result is negative. If the GRS 
extension bits are zero then the result was exact and 
rounding is not required. See Table 31. 

In practice, the significand (or the lower cell of a 
double-precision significand) is in s0, and the sign and 
exponent are in ct. carry is set if the increment from rnd 
carried out of bit 31 of s0; otherwise, carry is cleared. 
This allows carry to be propagated into the upper cell of a 
double-precision significand. 

 
Exceptions 
 To speed processing, exception conditions detected 
by the floating-point instructions set exception signaling 
bits in mode and, if enabled, trap. The following traps are 
supported: 
 
•  Exponent  signaled from testexp 
•  Underflow  signaled from norml, addexp, 

subexp 
•  Overflow  signaled from normr, addexp, 

subexp 
•  Normalize  signaled from denorm, norml, 

normr 
•  Rounded  signaled from rnd 
 
Exceptions are prioritized when the instruction completes 
and are processed with any other system exceptions or 
traps that occur concurrently. See Exceptions and 
Trapping. 
 
•  Exponent Trap: Detects special-case exponents. If the 
tested exponent is all zeros or all ones, carry is set and the 
exception is signaled. Setting carry allows testing the 
result without processing a trap. 
• Underflow Trap: Detects exponents that have become 
too small due to calculations or decrementing while 
shifting. 
•  Overflow Trap: Detects exponents that have become 
too large due to calculations or incrementing while 
shifting. 
•  Normalize Exception: Detects bits lost due to shifting 
into the GRS extension. The exception condition is tested 
at the end of instruction execution and is signaled if any of 
the bits in the GRS extension are set. Testing at this time 
allows normal right shifts to be used to set the GRS 
extension bits for later floating-point instructions to test 
and signal. 
•  Rounded Exception: Detects a change in bit zero of 
s0 due to rounding. 
 
Hardware Debugging Support 
 
 The CPU contains a breakpoint instruction, bkpt, and 
a single-step instruction, step. The instruction bkpt 
executes the breakpoint trap and supplies the address of 
the bkpt opcode to the trap handler. This allows execution 
at full processor speed up to the breakpoint, and then 
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execution in a program-controlled manner following the 
breakpoint. step executes the instruction at the supplied 
address, and then executes the single-step trap. The single-
step trap can efficiently monitor execution on an 
instruction-by-instruction basis. 
 
Breakpoint 
 The instruction bkpt performs an operation similar to 
a call subroutine to address 0x134, except that the return 
address is the address of the bkpt opcode. This behavior is 
required because, due to the instruction push.l, the address 
of a call subroutine cannot always be determined from its 
return address. 

Commonly, bkpt is used to temporarily replace an 
instruction in an application at a point of interest for 
debugging. The trap handler for bkpt typically restores the 
original instruction, displays information for the user, and 
waits for a command. Or, the trap handler could be 
implemented as a conditional breakpoint to check for a 
termination condition (such as a register value or the 
number of executions of this particular breakpoint), 
continuing execution of the application until the condition 
is met. The advantage of bkpt over step is that the 
applications executes at full speed between breakpoints. 
 
Single-Step 
 The instruction step is used to execute an application 
program one instruction at a time. It acts much like a 
return from subroutine, except that after executing one 
instruction at the return address, a trap to address 0x138 
occurs. The return address from the trap is the address of 
the next instruction. The trap handler for step typically 
displays information for the user, and waits for a 
command. Or, the trap handler could instead check for a 
termination condition (such as a register value or the 
number of executions of this particular location), 
continuing execution of the application until the condition 
is met. 
 

Step is processed and prioritized similarly to the other 
exception traps. This means that all traps execute before 
the step trap. The result is that step cannot directly single-
step through the program code of other trap handlers. The 
instruction step is normally considered to be below the 

Table 33 Code example: Memory Fault Service 
Routine 
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operating-system level, thus operating-system functions 
such as stack-page traps must execute without its 
intervention.  
 

Higher-priority trap handlers can be single-stepped by 
re-prioritizing them in software. Rather than directly 
executing a higher-priority trap handler from the 
corresponding executable trap vector, the vector would 
branch to code to rearrange the return addresses on the 
return stack to change the resulting execution sequence of 
the trap handlers. Various housekeeping tasks must also be 
performed, and the various handlers must ensure that the 
stack memory area boundaries are not violated by the re-
prioritized handlers. 
 
Register mode 
 
 mode contains a variety of bits that indicate the status 
and execution options of the CPU. Except as noted, all 
bits are writable. The register is shown in Figure 9. 
 
mflt_write 

After a memory-fault exception is signaled, indicates 
that the fault occurred due to a memory write. 
 
guard_bit 

The most-significant bit of a 3-bit extension below 
the least-significant bit of s0 (s1, if fp_precision is set) 
that is used to aid in rounding floating-point numbers. 
 
round_bit 

The middle bit of a 3-bit extension below the least-
significant bit of s0 (s1, if fp_precision is set) that is used 
to aid in rounding floating-point numbers. 
 
sticky_bit 

The least-significant bit of a 3-bit extension below the 
least-significant bit of s0 (s1, if fp_precision is set) that is 
used to aid in rounding floating-point numbers. Once set 
due to shifting or writing the bit directly, the bit stays set 
even though zero bits are shifted right through it, until it is 
explicitly cleared or written to zero. 
 
mflt_trap_en 

If set, enables memory-fault traps. 
 

mflt_exc_sig 
Set if a memory fault is detected. 

 
ls_boundary 

Set if ls_ovf_exc_sig or ls_unf_exc_sig becomes set 
as the result of a stack spill or refill. Cleared when the 
address in la, as the result of a stack spill or refill, has 
entered the middle region of a 1024-byte memory page, 
and when la is written. Used by the local-register stack 
trap logic to prevent unnecessary stack overflow and 
underflow traps when repeated local-register stack spills 
and refills occur near a 1024-byte memory page boundary. 
Not writable. 
ls_unf_trap_en 

If set, enables a local-register stack underflow trap to 
occur after a local-register stack underflow exception is 
signaled.  
 
ls_unf_exc_sig 

Set if a local-register stack refill occurs, ls_boundary 
is clear, and the accessed memory address is in the last 
thirty-two cells of a 1024-byte memory page. 
 
ls_ovf_trap_en 

If set, enables a local-register stack overflow trap to 
occur after a local-register stack overflow exception is 
signaled.  
 
ls_ovf_exc_sig 

Set if a local-register stack spill occurs, ls_boundary 
is clear, and the accessed memory address is in the first 
thirty-two cells of a 1024-byte memory page. 
 
os_boundary 

Set if os_ovf_exc_sig or os_unf_exc_sig becomes set 
as the result of a stack spill or refill. Cleared when the 
address in sa, as the result of a stack spill or refill, has 
entered the middle region of a 1024-byte memory page, 
and when sa is written. Used by the operand stack trap 
logic to prevent unnecessary stack overflow and 
underflow traps when repeated operand stack spills and 
refills occur near a 1024-byte memory page boundary. 
Not writable. 
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os_unf_trap_en 
If set, enables an operand stack underflow trap to 

occur after an operand stack underflow exception is 
signaled. 

Figure 9 Register Mode 

os_unf_exc_sig 
Set if an operand stack refill occurs, os_boundary is 

clear, and the accessed memory address is in the last 
thirty-two cells of a 1024-byte memory page. 

 

 

31 0 123 4 56 7 8 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 

Floating Point 

fp_precision 
fp_round_mode fp_exp_trap_en fp_exp_exc_sig fp_unf_trap_en fp_unf_exc_sig fp_ovf_trap_en fp_ovf_exc_sig fp_nrm_trap_en fp_nrm_exc_sig fp_rnd_trap_en fp_rnd_exc_sig

sticky_bit 
round_bit 
guard_bit 

underflow exception signal 
underflow trap enable

exponent exception signal
exponent trap enable

rounding mode (0=nearest,
1= !infinity, 2=+infinity, 3=zero)

precision (0=single, 1=double)

overflow trap enable overflow exception signal
normalize trap enable

normalize exception signal round trap enable round exception signal
rounding guard bit
rounding round bit
rounding sticky bit

Mnemonic Description

os_ovf_exc_sig os_ovf_trap_en os_unf_exc_sig
os_unf_trap_en
os_boundary Mnemonic 

overflow exception signal overflow trap enable
underflow exception signal
underflow trap enable boundary area entered Description

Operand Stack ls_ovf_exc_sig
ls_ovf_trap_en ls_unf_exc_sig
ls_unf_trap_en
ls_boundary Mnemonic

overflow exception signal overflow trap enable underflow exception signal underflow trap enable boundary area entered Description Local-Register Stack 

mflt_trap_en 
Mnemonic 

exception signal
Description Memory Fault

mflt_exc_sig 
mflt_write trap enable 

fault was a write 

Mnemonic Description
carry 
power_fail 
interrupt_en global interrupt enable

power fail occurred
carry flag 
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os_ovf_trap_en 

If set, enables an operand stack overflow trap to occur 
after an operand stack overflow exception is signaled. 

os_ovf_exc_sig 
Set if an operand stack spill occurs, os_boundary is 

clear, and the accessed memory address is in the first 
thirty-two cells of a 1024-byte memory page. 
 
carry 

Contains the carry bit from the accumulator. Saving 
and restoring mode can be used to save and restore carry. 
 
power_fail 

Set during power-up to indicate that a power failure 
has occurred. Cleared by any write to mode. Otherwise, 
not writable. 
 
interrupt_en 

If set, interrupts are globally enabled. Set by the 
instruction ei, cleared by di. 
 
fp_rnd_exc_sig 

If set, a previous execution of rnd caused a change in 
the least significant bit of s0 (s1, if fp_precision is set). 
 
fp_rnd_trap_en 

If set, enables a floating-point round trap to occur 
after a floating-point round exception is signaled. 
 
fp_nrm_exc_sig 

If set, one or more of the guard_bit, round_bit and 
sticky_bit were set after a previous execution of denorm, 
norml or normr. 
 
fp_nrm_trap_en 

If set, enables a floating-point normalize trap to occur 
after a floating-point normalize exception is signaled. 
 
fp_ovf_exc_sig 

If set, a previous execution of normr, addexp or 
subexp caused the exponent field to increase to or beyond 
all ones. 
 
fp_ovf_trap_en 

If set, enables a floating-point overflow trap to occur 
after a floating-point overflow exception is signaled. 
 

fp_unf_exc_sig 
If set, a previous execution of norml, addexp or 

subexp caused the exponent field to decrease to or beyond 
all zeros. 
 
fp_unf_trap_en 

If set, enables a floating-point underflow trap to 
occur after a floating-point underflow exception is 
signaled. 
 
fp_exp_exc_sig 

If set, a previous execution of testexp detected an 
exponent field containing all ones or all zeros. 
 
fp_exp_trap_en 

If set, enables a floating-point exponent trap to occur 
after a floating-point exponent exception is signaled. 
 
fp_round_mode 

Contains the type of rounding to be performed by the 
CPU instruction rnd. 
 
fp_precision 

If clear, the floating-point instructions operate on 
stack values in IEEE single-precision (32-bit) format. If 
set, the floating-point instructions operate on stack values 
in IEEE double-precision (64-bit) format. 
 
CPU Reset 
 
 The CPU begins executing at address 0x80000008 
with the mode register set to all zeros. 
 
Interrupts 
 
 The CPU contains an on-chip prioritized interrupt 
controller that supports up to eight different interrupt 
levels. Interrupts can be received through the bit inputs or 
can be forced in software by writing to ioin. For complete 
details of interrupts and their servicing, see Interrupt 
Controller. 
 
Bit Inputs 
 
 The CPU contains eight general-purpose bit inputs 
that are shared with the INTC as requests for those 
services. The bits are taken from _I _N[7:0]. See Bit Inputs. 
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Bit Outputs 
 
 The CPU contains eight general-purpose bit outputs 
which can be written by the CPU. The bits are output on  
O_U_T_[7:0]. See Bit Outputs. 
 

 
Table 34 Instructions that Hold-off Pre-fetch 
 

 The CPU issues bus requests ordered to optimize 
execution. To keep executing instructions as much as 
possible, the next group of instructions are fetched while 
the current group executes. This is referred to as 
instruction pre-fetch. Instruction pre-fetch begins as soon 
as an instruction group begins to execute unless it is held 
off. Pre-fetch is held off if the executing instruction group 
contains one of the instruction in Table 34. ld and st only 
hold-off pre-fetch if they occur as the first instruction in 
the executing instruction group. Knowing which 
instruction hold-off pre-fetch is useful when programming 
bus configuration information. 
 
Posted-Write 
 
 The CPU supports a one-level posted write. This 
allows CPU execution to continue unimpeded after the 
write is posted. To maintain memory coherency, posted 
writes have the highest priority of all CPU bus requests. 
This guarantees that memory reads following a posted 
write will always retrieve the most up-to-date data. 
 
On-Chip Resources 
 
 The non-CPU hardware features of the CPU are 
generally accessed by the CPU through a set of 8  
registers located in their own address space. Using a 
separate address space simplifies implementation, 
preserves opcodes, and prevents cluttering the normal 
memory address space with peripherals. Collectively 
known as the On-Chip Resources, these registers allow 
access to the bit inputs, bit outputs, INTC and system 
configuration. These registers and their functions are 
referenced throughout this manual and are described in 
detail in On-Chip Resource Registers. 

 
Instruction Reference 
 
 As a stack-based CPU architecture, the  IGNITE  
PROCESSOR CPU instructions have documentation 
requirements similar to other stack-based systems, such as 
the Java Virtual Machine (JVM) and American National 
Standard Forth (ANS Forth). Not surprisingly, many of 
the JVM and ANS Forth operations are instructions on the 
 IGNITE  CPU. As a result, the JVM and ANS Forth stack 
notation used for language documentation is useful for 
describing  IGNITE   CPU instructions. The basic 
notation adapted for the  IGNITE   CPU is: 

( input_operands -- output_operands ) 
( L: input_operands -- output_operands ) 

where “--” indicates the execution of the instruction. 
“Input_operands” and “output_operands” are lists of 
values on the operand stack (the default) or local register 
stack (preceded by “L:”). These are similar, though not 
always identical, to the source and destination operands 
that can be represented within instruction mnemonics. The 
value held in the top-of-stack register (s0 or r0) is always 
on the right of the operand list with the values held in the 
higher ordinal registers appearing to the left (e.g., s2 s1 
s0). The only items in the operand lists are those that are 
pertinent to the instruction; other values may exist under 
these on the stacks. All of the input_operands are 
considered to be popped off the stack, the operation 
performed, and the output_operands pushed on the stack. 
For example, a notational expression of: 

n1 n2 -- n3 
represents two input operands, n1 and n2, and one output 
operand, n3. For the instruction add, n1 (taken from s1) is 
added to n2 (taken from s0), and the result is n3 (left in 
s0). If the name of a value on the left of either diagram is 
the same as the name of a value on the right, then the 
value was required, but unchanged. The name represents 
the operand type. Numeric suffixes are added to indicate 
different or changed operands of the same type. The 
values may be bytes, integers, floating-point numbers, 
addresses, or any other type of value that can be placed in 
a single 32-bit cell. 

addr  address 
byte  character or byte (upper 24 bits zero) 
n   integer or 32 arbitrary bits 
other text integer or 32 arbitrary bits 
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ANS Forth defines other operand types and operands 
that occupy more than one stack cell; those are not used 
here. 

Note that typically all stack action is described by 
the notation and is not explicitly described in the text. If 
there are multiple possible outcomes then the outcome 
options are on separate lines and are to be considered as 
individual cases. If other registers or memory variables 
are modified, then that effect is documented in the text. 

Also on the stack diagram line is an indication of 
the effect on carry, if any, as well as the opcode and 
execution time at the right margin. 

A  timing with an “M” indicates the specified 
number of bus requests and bus transactions (memory 
cycles) for the instruction to complete. The value used 
for “M” includes both the bus request and bus 
transaction times and depends on the memory interface 
implemented. 

Timings do not include implied memory cycles 
such as stack spills and refills required  to maintain the 
state of the stack caches. Any operation that pushes or 
pops a stack, or references a local register could cause a 

memory cycle. Operations that wait on the completion 
of instruction pre-fetch are labeled “Mprefetch.” These 
are distinct in that pre-fetch occurs in parallel with 
execution so the wait time is probably not a full 
memory cycle. 
 
ANS Forth Word Equivalents 
 Those IGNITE CPU instructions that are exact 
equivalents of ANS Forth words are indicated in the 
body text for the instruction. Many additional ANS 
Forth words simply require a short instruction sequence, 
but these are not indicated. 
 
Java Byte Code Equivalents 
 Those IGNITE CPU instructions that are exact 
equivalents of Java byte codes are indicated in the body 
text for the  IGNITE  CPU instruction. Many additional 
Java byte codes simply require a short instruction 
sequence, though the most complex byte codes require 
a subroutine call. For detailed information contact 
PTSC. 
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add 
 
add ( n1 n2 -- n3 ) carry±  1100 0000 
 0xC0 
 1 CPU-clock 

Add n1 and n2 giving the sum n3. carry is set if there is a carry out of bit 31 of the sum and cleared otherwise. 
 

Equivalent to Java byte code iadd. 
 

Equivalent to ANS Forth word +. 
 
add pc ( n1 -- n2 )  1011 1011 
 0xBB 
 1 CPU-clock 

Add the value of pc (the byte-aligned address of the add pc opcode) to n1 giving the sum n2. carry is set if there is a 
carry out of bit 31 of the sum and cleared otherwise. 

  
 
 

adda 
Add Address 
 
 
adda ( n1 n2 -- n3 ) 1110 1000 
 0xE8 
 1 CPU-clock 

Add n1 and n2 giving the sum n3. carry is unaffected. 
  
 
 

addc 
Add with Carry 
 
 
addc ( n1 n2 -- n3 ) carry± 1100 0010 
 0xC2 
 1 CPU-clock 

Add n1 and n2 and carry giving the sum n3. carry is set if there is a carry out of bit 31 of the sum, otherwise carry is 
cleared. 
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addexp 
Add Exponents 
 
addexp ( n1 n2 -- n3 n4 n5 ) 1101 0010 
 0xD2 
 2 CPU-clocks 

( L: -- addr )  only when trap processed 4+M CPU-clocks 
Perform the following: 
     Exponent_Field(n5) = Exponent_Field(n1) - BIAS + Exponent_Field(n2) 
     Sign_Bit(n5) = Sign_Bit(n1) XOR Sign_Bit(n2) 
BIAS is 127 (0x3F800000 in position) for single precision and 1023 (0x3FF00000 in position) for double precision, 
as selected by fp_precision. 

 
CoCPUte as described above. Clear the exponent field bits and sign bit and set the hidden bit of n1 and n2, giving n3 
and n4, respectively. n5 is the result of the coCPUtation. After completion, if the exponent-field calculation result 
equaled or exceeded the maximum value of the exponent field (exponent field result � 255 for single, exponent field 
result � 2047 for double) an overflow exception is signaled. If the exponent-field calculation result is less than or 
equal to zero an underflow exception is signaled. When an exception is signaled, the exponent field of n5 contains as 
many low-order bits of the coCPUted exponent as it will hold. 

  
 
 

and 
Bitwise AND 
 
and ( n1 n2 -- n3 ) carry clear  1110 0001 
 0xE1 
 1 CPU-clock 

Perform a bitwise AND of n1 and n2 giving the result n3. 
 

Equivalent to Java byte code iand. 
 

Equivalent to the ANS Forth word AND. 
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bkpt 
Breakpoint 
 
bkpt ( -- ) 0011 1100 

( L: -- addr ) 0x3C 
 1+M CPU-clocks 

Perform a call subroutine to the breakpoint trap location, 0x134. addr is the address of the bkpt instruction. Typically 
the breakpoint service routine replaces the bkpt opcode at addr with the original opcode, performs whatever 
debugging function desired, and ret to addr. 

 
Equivalent to Java byte code breakpoint. 
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b 
 
Branch if Condition 
 
br offset ( -- ) 0000 0xxx 
Branch Unconditionally 0x0? 
 M CPU-clocks 

Transfer execution to offset cells from the beginning of the current instruction group. 
 

The instruction adds the two's-complement cell offset encoded within and following the br opcode to pc, and 
transfers execution to the resulting cell-aligned address. 

 
Equivalent to Java byte codes goto, goto_w. 

 
Equivalent to the run-time for the ANS Forth words AGAIN, AHEAD, ELSE. 

 
br [] ( addr -- ) 0100 1011 
Branch Indirect 0x4B 
 M CPU-clocks 

Replace the value in pc with addr to transfer execution to addr. Note that addr is an absolute byte-aligned address 
and not an offset. 

 
bz offset ( n -- ) 0001 0xxx 
Branch if Zero 0x1? 
 M CPU-clocks 

If n is zero, transfer execution to offset cells from the beginning of the instruction group; otherwise, continue 
execution at the next instruction group. 

 
If n is zero the instruction adds the two's-complement cell offset encoded within and following the bz opcode to pc, 
and transfers execution to the resulting cell-aligned address. If n is non-zero execution continues with the next 
instruction group. 

 
Equivalent to Java byte codes ifeq, ifnull. 

 
Equivalent to the run-time for the ANS Forth words IF, UNTIL, WHILE.
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dbr offset ( -- ) 0001 1xxx 
Decrement CT and Branch 0x1? 
 M CPU-clocks 

Decrement ct by one. If ct is non-zero, transfer execution to offset cells from the beginning of the current instruction 
group; otherwise, continue execution with the next instruction group. 

 
The instruction decrements ct by one. If the resulting ct is non-zero the instruction then adds the two's-complement 
cell offset encoded within and following the dbr opcode to pc, and transfers execution to the resulting cell-aligned 
address. If the resulting ct is zero execution continues with the next instruction group. 

cache  
Fill/Empty Stack Cache 
 
The cache instructions are used to optimize program execution, or to make program execution more deterministic. Stack 
cache spills and refills can be caused to occur at preferential times, and to occur in bursts to optimize memory access. 
Executing the instruction with both n and n-14 (n>0) ensures that an exact number of items are in the stack cache. 
Pushing dummy values onto the stack (one value for the local-register stack, three values for the operand stack) and then 
executing the instruction with n = -14 causes all previously held data to be spilled to memory. Note that if stack-page 
exceptions are enabled, a trap might occur and change the state of the stacks from that set by the cache instruction. See 
Stack-Page Exceptions on page ?. 
 
lcache ( n -- ) 0100 1101 
 0x4D 
 1 or (1M to 14M) CPU-clocks 

If n > 0, ensure that at least n cells can be removed from the local-register stack without causing local-register stack 
cache refills. Cells are refilled from memory into the cache if required. (1 � n � 14). 

 
If n < 0 (two's complement), ensure that at least �n� cells can be added to the local-register stack without causing 
local-register stack cache spills. Cells are spilled from the stack cache to memory if required. (-14 � n � -1). 

 
If n = 0 the local-register stack cache is unchanged. 

 
scache ( n -- n ) 0100 0101 
 0x45 
 1 or (1M to 14M) CPU-clocks 

If n > 0, ensure that at least n cells can be removed from the operand stack without causing operand stack cache 
refills. Cells are refilled from memory into the cache if required. (1 � n � 14). 

 
If n < 0 (two's complement), ensure that at least �n� cells can be added to the operand stack without causing 
operand stack cache spills. Cells are spilled from the stack cache to memory if required. (-14 � n � -1) 

 
If n = 0 the operand stack cache is unchanged. 
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call 
Call Subroutine 
 
call offset ( -- ) 0000 1xxx 

( L: -- addr ) 0x0? 
Call Subroutine 1+M CPU-clocks 
 

Transfer execution to offset cells from the beginning of the current instruction group. addr is the cell-aligned address 
of the next instruction group. 

 
The instruction pushes addr on the local-register stack and then adds the two's-complement cell offset encoded with-
in and following the call opcode to pc, and transfers execution to the resulting cell-aligned address. The offset is in 
the same form and follows the same rules as those for branches. 

 
call [] ( addr1 -- ) 0100 1110 

( L: -- addr2 ) 0x4E 
Call Subroutine Indirect 1+M CPU-clocks 
 

Replace the value in pc with addr1 to transfer execution there. addr2 is the byte-aligned address of the next 
instruction following call []. Note that addr1 is an absolute address and not an offset. 

  
 
 

cmp 
Compare 
 
cmp ( n1 n2 -- n1 n2 ) carry± 1100 1011 
 0xCB 
 1 CPU-clock 

Compare n2 and n1 as signed values. Set carry if n1 < n2, otherwise clear carry. 
  
 
 

copyb 
Copy Byte Across Cell 
 
copyb ( n1 -- n2 ) 1101 0000 
 0xD0 
 1 CPU-clock 

n2 is the result of copying the lowest byte of n1 into each of the higher byte positions. For example, 0x12345678 
becomes 0x78787878. 
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dbr See _b_. 
  
 
 

dec 
Decrement 
 
dec #1 ( n1 -- n2 ) 1100 1111 
 0xCF 
 1 CPU-clock 

Subtract one from n1 leaving the result n2. 
 

Equivalent to ANS Forth word 1-. 
 
dec #4 ( n1 -- n2 ) 1100 1101 
 0xCD 
 1 CPU-clock 

Subtract four from n1 leaving the result n2. 
 
dec ct, #1 ( -- ) 1100 0001 
 0xC1 
 1 CPU-clock 

Subtract one from ct. 
  

denorm 
Denormalize 
 
denorm ( n1 -- n2 )  if single precision 1100 0101 

( n1 n2 -- n3 n4 )  if double precision 0xC5 
 1 to 13 CPU-clocks 

( L: -- addr )  only when trap processed 
 3+M to 15+M CPU-clocks 

Shift n1 (or n2n1 if double) right by the bit count in the exponent field of ct. Bits shift out of the right into the GRS 
extension. If any bit in the GRS extension is set, a normalize exception is signaled. The location of the exponent field 
depends on fp_precision. The exponent field of ct is decremented to zero. 

 
Shifting is performed by bytes or bits to minimize CPU-clock cycles required. If the count in the exponent bits of ct 
is larger than the width in bits of the significand field + 3 (for the guard_bit, round_bit and the hidden bit), the 
sticky_bit is set and the other bits are cleared, and execution requires one CPU-clock cycle. 
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depth 
Depth of Stack 
 
 Note that if stack-page exceptions are enabled, a trap might occur and change the state of the stacks from that returned. 
See Stack-Page Exceptions on page ?. 
 
ldepth ( -- n ) 1001 1011 
 0x9B 
 1 CPU-clock 

n is exactly the number of cells that can be removed from the local-register stack without causing a local-register 
stack cache refill. (0 � n � 14). 

 
sdepth ( -- n ) 1001 1111 
 0x9F 
 1 CPU-clock 

n is exactly the number of cells, before n was pushed, that could be removed from the operand stack without causing 
an operand stack cache refill. (0 � n � 14). If n = 14, then an operand stack cache spill occurred when n was pushed 
and only 13 cells remain, excluding n, that can be removed from the operand stack without causing an operand stack 
cache refill. 

  
 
 

di 
Disable Interrupts 
 
di ( -- )  1011 0111 
 0xB7 
 1 CPU-clock 

Globally disable interrupts, clearing interrupt_en. The ioie bits are not changed. 
  
 
 

divu 
Divide Unsigned 
 
divu ( n1 n2 -- n3 n4 ) 1101 1110 
 0xDE 
 32 CPU-clocks 

Divide the double value n2n1 by the value in g0 giving the quotient n3 and remainder n4. All values are unsigned. If 
n2 is greater than or equal to g0 then the quotient will overflow. If g0 is zero then n3 equals n1 and n4 equals n2. 
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ei 
Enable Interrupts 
 
ei ( -- )  1011 0110 
 0xB6 
 1 CPU-clock 

Globally enable interrupts, setting interrupt_en. The ioie bits are not changed. 
  
 
 

eqz 
Equal Zero 
 
eqz ( n1 -- n2 )  1110 0101 
 0xE5 
 1 CPU-clock 

n2 is the logical inverse of n1. If n1 is equal to zero n2 is -1. If n1 is non-zero n2 is zero. 
 

Equivalent to ANS Forth word 0=. 
  
 
 

expdif 
Exponent Difference 
 
expdif ( n1 n2 -- n3 n4 ) 1100 0100 
 0xC4 
 1 CPU-clock 

Clear the upper half of ct. Subtract the exponent field of n2 from the exponent field in n1 placing the result in the 
exponent-field bits of ct. Clear the exponent-field bits and sign bit and set the hidden bit of n1 and n2 giving n3 and 
n4, respectively. The locations of the exponent field and hidden bit depend on fp_precision. 

  
 
 

extexp 
Extract Exponent 
 
extexp ( n1 -- n2 ) 1101 1011 
 0xDB 
 1 CPU-clock 

Clear the significand bits of n1 leaving the exponent-field bits and sign bit unchanged, giving n2. The locations of 
the exponent field and significand field depend on fp_precision. 
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extsig 
Extract Significand 
 
extsig ( n1 -- n2 ) 1101 1100 
 0xDC 
 1 CPU-clock 

Clear the exponent and sign bits of n1 leaving the significand-field bits unchanged. Then set the hidden bit of n1, 
giving n2. The locations of the exponent field and significand field depend on fp_precision. 
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frame 
Allocate On-Chip Stack Frame 
 
lframe ( n -- ) 1011 1110 

( L: -- xn�x1 ) ( n > 0 ) 0xBE 
 1 or (1M to 15M) CPU-clocks 

( L: xn�x1 -- ) ( n < 0 ) 
 1 or (1 to 15) CPU-clocks 

( L: -- ) ( n = 0 ) 1 CPU-clock 
If n > 0, allocate n uninitialized cells, xn�x1, at the top of the local-register stack cache. This causes r0 to move to rn, 
r1 to move to r(n+1), ri to move to r(n+i), etc. Those local registers for which (n+i) > 14 are written from the local-
register stack cache to memory. (1 � n � 15). 

 
If n < 0, discard �n� cells, xn�x1, from the top of the local-register stack cache. This causes r0 through r(�n�-1) to 
be discarded, r�n� to become r0, r(�n�+1) to become r1, etc. (-15 � n � -1). Each cell discarded that is not in the 
stack cache requires one CPU-clock cycle. 

 
If n = 0, no cells are allocated or discarded. 

 
sframe  1011 1111 

 0xBF 
( m n -- xn�x1 m n ) ( n > 0 ) 

 1 or (1M to 15M) CPU-clocks 
( xn�x1 m n -- m n ) ( n < 0 ) 

 1 or (1 to 15) CPU-clocks 
( n -- n ) ( n = 0 ) 1 CPU-clock 

If n > 0, allocate n uninitialized cells, xn�x1, in the operand stack cache after s0 and s1. This causes s2 to move to 
s(n+2), s3 to move to s(n+3), si to move to s(n+i), etc. Those stack cells for which (n+i) > 16 are written from the 
operand stack cache to memory. (1 � n � 15). 

 
If n < 0, discard �n� cells, xn�x1, from within the operand stack cache after s0 and s1. This causes s2 through 
s(�n�+1) to be discarded, s(�n�+2) to become s2, s(�n�+3) to become s3, etc. (-15 � n � -1). Each cell 
discarded that is not in the stack cache requires one CPU-clock cycle. 

 
If n = 0, no cells are allocated or discarded. 
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iand 
Bitwise Invert then AND 
 
iand ( n1 n2 -- n3 ) clear carry 1110 1001 
 0xE9 
 1 CPU-clock 

Clear the bits in n1 that are set in n2 leaving the result n3. 
  
 
 

inc 
Increment 
 
inc #1 ( n1 -- n2 ) 1100 1110 
 0xCE 
 1 CPU-clock 

Add one to n1 giving the sum n2. 
 

Equivalent to ANS Forth word 1+. 
 
inc #4 ( n1 -- n2 ) 1100 1100 
 0xCC 
 1 CPU-clock 

Add four to n1 giving the sum n2. 
  
 
 

lcache See _cache. 
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ld 
Load Indirect from Memory 
 
ld [--r0] ( -- n ) 0100 0100 
 0x44 
 1+M CPU-clocks 

Decrement the address in r0 by four. n is the value from the cell in memory at the new address in r0. The two least 
significant bits of the address are ignored and treated as zero. 

 
ld [--x] ( -- n ) 0100 1010 
 0x4A 
 1+M CPU-clocks 

Decrement the address in x by four. n is the value from the cell in memory at the new address in x. The two least 
significant bits of the address are ignored and treated as zero. 

 
ld [r0++] ( -- n ) 0100 0110 
 0x46 
 M CPU-clocks 

n is the value from the cell in memory at the address in r0. Increment r0 by four. The two least significant bits of the 
address are ignored and treated as zero. 

 
ld [r0] ( -- n ) 0100 0010 
 0x42 
 M CPU-clocks 

n is the value from the cell in memory at the address in r0. The two least significant bits of the address are ignored 
and treated as zero. 

 
ld [x++] ( -- n ) 0100 1001 
 0x49 
 M CPU-clocks 

n is the value from the cell in memory at the address in x. Increment x by four. The two least significant bits of the 
address are ignored and treated as zero. 

 
ld [x] ( -- n ) 0100 0001 
 0x41 
 M CPU-clocks 

n is the value from the cell in memory at the address in x. The two least significant bits of the address are ignored 
and treated as zero. 
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ld [] ( addr -- n ) 0100 0000 
 0x40 
 M CPU-clocks 

n is the value from the cell in memory at the address addr. The two least significant bits of the address are ignored 
and treated as zero. 

 
Equivalent to ANS Forth words @, F@, SF@. 

 
ld.b [] ( addr -- byte ) 0100 1000 
 0x48 
 M CPU-clocks 

byte is the value from the byte in memory at the address addr. 
 
ld.w [] ( addr -- word ) 0100 1100 
 0x4C 
 M CPU_clocks 

word is the 16-bit value from the word in memory at address addr. The least significant bit of the address is ignored 
and treated as zero. 

 
Equivalent to ANS Forth word C@. 

  
 
 

ldo 
Load Indirect from On-Chip Resource 
 
ldo [] ( addr -- n ) 1001 0110 
 0x96 
 1 CPU-clock 

n is the value from the on-chip resource at addr. For valid values of addr, see On-Chip Resource Registers, page 89. 
 
ldo.i [] ( bit_addr -- n ) 1001 0111 
 0x97 
 1 CPU-clock 

n is all ones (-1) if the bit at the on-chip resource address bit_addr is one, otherwise n is zero. For valid values of 
bit_addr, see On-Chip Resource Registers, page 89. 

  
 
 

ldepth See _depth. 
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lframe See _frame. 
 
  
 
 

mloop_ 
Micro Loop on Condition 
 
An mloop re-executes the current instruction group, beginning with the first instruction in the group, up to the mloop_ 
instruction, until a specified condition is not met or until ct is decremented to zero. When either termination condition 
occurs, execution continues with the instruction following the mloop_ opcode. 
 
mloop ( -- ) 0011 1000 
Micro Loop Unconditionally 0x38 
 1 CPU-clock 

Decrement ct by one. If ct is non-zero transfer execution to the beginning of the current instruction group. If ct is 
zero continue execution with the instruction following mloop. 

 
mloopc ( -- ) 0011 1001 
Micro Loop if Carry 0x39 
 1 CPU-clock 

Decrement ct by one. If ct is non-zero and carry is set transfer execution to the beginning of the current instruction 
group. If ct is zero or carry is clear continue execution with the instruction following mloopc. 

 
mloopn 
mloopnp ( n -- n ) 0011 1010 
Micro Loop if Negative/Not Positive 0x3A 
 1 CPU-clock 

Decrement ct by one. If ct is non-zero and n is negative (neither positive nor zero) transfer execution to the 
beginning of the current instruction group. If ct is zero or n is not negative (either positive or zero) continue 
execution with the instruction following mloopn or mloopnp. 

 
mloopnc ( -- ) 0011 1101 
Micro Loop if Not Carry 0x3D 
 1 CPU-clock 

Decrement ct by one. If ct is non-zero and carry is clear transfer execution to the beginning of the current instruction 
group. If ct is zero or carry is set continue execution with the instruction following mloopnc. 
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mloopnn 
mloopp ( n -- n ) 0011 1110 
Micro Loop if Not Negative/Positive 0x3E 
 1 CPU-clock 

Decrement ct by one. If ct is non-zero and n is not negative (either positive or zero) transfer execution to the 
beginning of the current instruction group. If ct is zero or n is negative (neither positive nor zero) continue execution 
with the instruction following mloopnn or mloopp. 

 
mloopnz ( n -- n ) 0011 1111 
Micro Loop if Not Zero 0x3F 
 1 CPU-clock 

Decrement ct by one. If ct is non-zero and n is not zero transfer execution to the beginning of the current instruction 
group. If ct is zero or n is zero continue execution with the instruction following mloopnz. 

 
mloopz ( n -- n ) 0011 1011 
Micro Loop if Zero 0x3B 
 1 CPU-clock 

Decrement ct by one. If ct is non-zero and n is zero transfer execution to the beginning of the current instruction 
group. If ct is zero or n is not zero continue execution with the instruction following mloopz. 

 

mulfs 
Multiply Fast Signed 
 
mulfs ( n1 n2 -- n3 n4 ) 1101 0110 
 0xD6 
 2 to 32 CPU-clocks 

Multiply the bit-order-reversed value n1 by the value in g0 leaving the result n4. n2 is usually zero and n3 is garbage 
(see below). The number of significant bits in n1 is indicated by the value in ct. All values are single-cell size and 
signed. ct is decremented to zero. 

 
The program must supply n1 in bit-order-reversed form (e.g., the binary value for decimal 13 is 01101 and bit-order 
reversed is 10110; note that the original high-order bit is zero as a sign bit and must be included.) The program must 
also load ct with the bit count and push a zero for n2. For the example number above, the count would be 5. n3 is 
typically discarded. 

 
n2 could be non-zero but its use in this form is questionable. The effect of n2 on the result is that the value of n2 
shifted left by the bit count value in ct is added to the result, n4. n3 contains the low cell of the value remaining after 
n2n1 is shifted right by the number of bits in ct. Instruction execution time is limited to 65 CPU-clock cycles by the 
instruction expiration counter. 
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muls 
Multiply Signed 
 
muls ( n1 n2 -- n3 n4 ) 1101 0101 
 0xD5 
 32 CPU-clocks 

Multiply n1 by the value in g0 and add n2, leaving the double result n4n3. All values are signed. 
  
 
 

mulu 
Multiply Unsigned 
 
mulu ( n1 n2 -- n3 n4 ) 1101 0111 
 0xD7 
 32 CPU-clocks 

Multiply n1 by the value in g0 and add n2, leaving the double result n4n3. All values are unsigned. 
 

mxm 
Maximum 
 
mxm ( n1 n2 -- n1 n2 ) carry set 1101 1111 

          or ( n1 n2 -- n2 n1 ) carry clear 0xDF 
 2 CPU-clocks 

Compare n2 and n1 as signed values. Set carry if n1 < n2, otherwise clear carry. Bring the larger of n1 and n2 to the 
top of stack. That is, if the resulting carry is set then n2 is greater than n1 and n2 remains on top. If the resulting 
carry is clear then n2 is less than or equal to n1 and n1 is exchanged with n2. 

 

neg 
Two's-Complement Negation 
 
neg ( n1 -- n2 )  1100 1001 
 0xC9 
 1 CPU-clock 

n2 is the two's-complement negation of n1. 
 

Equivalent to Java byte code ineg. 
 

Equivalent to ANS Forth word NEGATE. 
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nop 
No Operation 
 
nop ( -- )  1110 1010 
 0xEA 
 1 CPU-clock 

Do nothing. 
 

Equivalent to Java byte code nop. 
  
 
 

norml 
Normalize Left 
 
norml ( n1 -- n2 )   if single precision 1100 0111 

( n1 n2 -- n3 n4 )   if double precision 0xC7 
 1 to 13 CPU-clocks 

( L: -- addr )   only when trap processed 
 3+M to 15+M CPU-clocks 

( L: -- addr1 addr2 )  only when both traps processed 
 5+2M to 17+2M CPU-clocks 

While the hidden bit and the seven bits to the right of it in n1 (n2 if double) are zero, repeat the following: 
    Shift n1 (or n2n1 if double) left by eight bits and decrement the exponent field in ct by eight. 
Then, while the hidden bit of n1 (n2 if double) is zero, repeat the following: 
    Shift n1 (or n2n1 if double) left by one bit and decrement the exponent field in ct by one. 

 
In both steps, bits shifted into bit zero of n1 come from the GRS extension. 

 
When the operation is complete, if shifting was required and the decremented field in ct reached or passed all zero 
bits during the processing, an underflow exception is signaled. If no shifting is required an underflow exception is 
not signaled. Then, if any bit in the GRS extension is set, a normalize exception is signaled. The location of the 
exponent field depends on fp_precision. If both traps are processed, the underflow trap has higher priority. 
Instruction execution time is limited to 65 CPU-clock cycles by the instruction expiration counter. 
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normr 
Normalize Right 
 
normr ( n1 -- n2 )   if single precision 1100 0110 

( n1 n2 -- n3 n4 )   if double precision 0xC6 
 1 to 11 CPU-clocks 

( L: -- addr )   only when trap processed 
 3+M to 13+M CPU-clocks 

( L: -- addr1 addr2 )   only when both traps processed 
 5+2M to 15+2M CPU-clocks 

While any bit except the first bit (the hidden bit) in the exponent field is non-zero, repeat the following: 
    Shift n1 (or n2n1 if double) right by one bit and increment the exponent field in ct by one. Bits shifted out of bit 
zero of n1 shift into the GRS extension bits. 

 
When the operation is complete, if shifting was required and the incremented field in ct reached or passed all one 
bits during the processing, an overflow exception is signaled. If no shifting is required an overflow exception is not 
signaled. Then, if the GRS extension is set, a normalization exception is signaled. The locations of the exponent field 
and hidden bit depend on fp_precision. If both traps are processed, the overflow trap has higher priority. 

notc 
Complement Carry 
 
notc ( -- ) carry inverted 1101 1101 
 0xDD 
 1 CPU-clock 

Invert the state of carry. 
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or 
Bitwise OR 
 
or ( n1 n2 -- n3 ) carry clear  1110 0000 
 0xE0 
 1 CPU-clock 

Perform a bitwise OR on n1 and n2 giving the result n3. 
 

Equivalent to Java byte code ior. 
 

Equivalent to ANS Forth word OR. 
  
 

pop 
 
pop ( n -- )  1011 0011 
 0xB3 
 1 CPU-clock 

Discard n. 
 

Equivalent to Java byte codes pop, l2i. 
Equivalent when executed twice to Java byte code pop2. 

 
Equivalent to ANS Forth word D>S, DROP, FDROP. 
Equivalent when executed twice to ANS Forth word 2DROP. 

 
pop ct ( n -- ) 1011 0100 
 0xB4 
 1 CPU-clock 

Replace the value in ct with n. 
 
pop gi ( n -- ) 0101 xxxx 
 0x5? 
 1 CPU-clock 

Replace the value in gi (global register i, i.e., g0–g15) with n. 
 
pop la ( addr -- ) 1011 1101 

( L: �jn�j1 -- ) 0xBD 
 1+M CPU-clocks 

Replace the value in la with cell-aligned address addr. The contents of the local-register stack cache, �jn�j1, are 
discarded. The two least-significant bits of la are cleared. The bit ls_boundary is cleared. A stack refill is performed 
at addr+4 to initialize r0. 

 
pop lstack ( n -- ) 1011 1010 

( L: -- n ) 0xBA 
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 1 CPU-clock 
Remove n from the operand stack and push it onto the local-register stack (into r0). The previous contents of r0 are 
placed in r1, the previous contents of r1 are placed in r2, and so on. 

 
Equivalent to ANS Forth word >R. 
Equivalent when executed twice to ANS Forth word 2>R. 

 
pop mode ( n -- ) 1011 1001 
 0xB9 
 1 CPU-clock 

Replace the value in mode with n and clear power_fail. The mode bits power_fail, ls_boundary and os_boundary are 
not writeable. 

 
pop ri ( n -- ) 1010 xxxx 
 0xA? 
 1 CPU-clock 

Replace the value in ri (local register i, i.e., r0–r14) with n. 
 

If ri is in the local-register stack cache (i � ldepth) the value in ri is replaced with n. If ri is not currently in the local-
register stack cache (i > ldepth), cells starting at r(ldepth+1) are read from memory sequentially to fill the cache until 
ri is reached. ri is then replaced with the value n. 

 
Equivalent to Java byte codes astore_0, astore_1, astore_2, astore_3, fstore_0, fstore_1, fstore_2, fstore_3, istore_0, 
istore_1, istore_2, istore_3. 
Equivalent when executed twice to Java byte codes dstore_0, dstore_1, dstore_2, dstore_3, lstore_0, lstore_1, 
lstore_2, lstore_3. 
Equivalent for indexes up to fourteen (almost all actual cases) to Java byte codes astore (vindex), fstore (vindex), 
istore (vindex). 
Equivalent when executed twice for indexes up to thirteen (almost all actual cases) to Java byte codes dstore 
(vindex), lstore (vindex). 

 
pop sa ( �jn�j1 m1 m2 addr -- m1 m2 ) 1011 1100 
 0xBC 
 1+M CPU-clocks 

Replace the value in sa with cell-aligned address addr. The contents of the operand stack cache, �jn�j1, are 
discarded. The two least-significant bits of sa are cleared. The bit os_boundary is cleared. A stack refill is performed 
at addr+4 to initialize s2. 

 
pop x ( n -- ) 1011 1000 
 0xB8 
 1 CPU-clock 

Replace the value in x with n. 
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push 
 
push ( n -- n n ) 1001 0010 
 0x92 
 1 CPU-clock 

Duplicate n. 
 

Equivalent to Java byte code dup. 
 
push ct ( -- n ) 1001 0100 
 0x94 
 1 CPU-clock 

n is the value in ct. 
 
push gi ( -- n ) 0111 xxxx 
 0x7? 
 1 CPU-clock 

n is the value in gi (global register i, i.e., g0–g15). 
 
push la ( -- addr ) 1001 1101 
 0x9D 
 1 CPU-clock 

addr is the value in la.  Note that if stack-page exceptions are enabled, a trap might occur and change the state of the 
stacks from that returned. See Stack-Page Exceptions on page ?. 

 
push lstack ( -- n ) 1001 1010 
 0x9A 

( L: n -- ) 1 CPU-clock 
Pop n from the local-register stack (from r0) and push it onto the operand stack. The previous contents of r1 are 
placed in r0, the previous contents of r2 are placed in r1, and so on. 

 
Equivalent to ANS Forth word R>. 
Equivalent when executed twice to ANS Forth word 2R>. 

 
push mode ( -- n ) 1001 0001 
 0x91 
 1 CPU-clock 
 

n is the value in mode. 
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push ri ( -- n ) 1000 xxxx 
 0x8? 
 1 CPU-clock 

n is the value in ri (local register i, i.e. r0–r14). 
 

If ri is in the local-register stack cache (i � ldepth) the value in ri is pushed onto the operand stack. If ri is not 
currently in the local-register stack cache (i > ldepth), cells starting at r(ldepth+1) are read from memory sequentially 
until ri is reached. The value in ri is then pushed onto the operand stack. 

 
Equivalent to Java byte codes aload_0, aload_1, aload_2, aload_3, fload_0, fload_1, fload_2, fload_3, iload_0, 
iload_1, iload_2, iload_3. 
Equivalent when executed twice to Java byte codes lload_0, lload_1, lload_2, lload_3, dload_0, dload_1, dload_2, 
dload_3. 
Equivalent for indexes up to fourteen (almost all actual cases) to Java byte codes aload (vindex), fload (vindex), 
iload (vindex). 
Equivalent when executed twice for indexes up to thirteen (almost all actual cases) to Java byte codes dload 
(vindex), lload (vindex). 

 
Equivalent to ANS Forth word R@. 
Equivalent when executed twice to ANS Forth word 2R@. 

 
push si ( -- n ) s0   1001 0010 
 0x92 
 s1   1001 0011 
 0x93 
 s2   1001 1110 
 0x9E 
 1 CPU-clock 

n is the value in si (operand stack register i, i.e., s0, s1 or s2) 
 

Equivalent to Java byte code dup. 
Equivalent when executed twice to Java byte code dup2. 

 
Equivalent to ANS Forth words 2DUP, DUP, FDUP, FOVER, OVER. 

 
push sa ( -- addr ) 1001 1100 
 0x9C 
 1 CPU-clock 

addr is the value in sa. Note that if stack-page exceptions are enabled, a trap might occur and change the state of the 
stacks from that returned. See Stack-Page Exceptions on page ?. 

 
push x ( -- n ) 1001 1000 
 0x98 
 1 CPU-clock 

n is the value in x. 
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push.b #n ( -- n ) 1001 0000 
 0x90 
 1 CPU-clock 

n is an eight-bit literal value in the range 0–255. The byte literal is encoded as the last byte in the instruction group. 
This allows only one unique push.b # value per instruction group. Multiple push.b # opcodes in the same instruction 
group push the same value. 

 
Equivalent for positive values to Java byte code bipush. 
Equivalent for some values to Java byte code sipush. 

 
push.l #n ( -- n ) 0100 1111 
 0x4F 
 M CPU-clocks 

n is a 32-bit literal value. The value is compiled as a full cell following the instruction group. Multiple push.l # in an 
instruction group are compiled with data in sequential cells following the instruction group in memory. As the push.l 
# opcodes are executed, the internally maintained next pc is incremented to move past each cell as it is fetched and 
pushed on the stack. Note that skipping a push.l # causes the CPU to execute the literal value because the skipped 
push.l # will not have incremented next pc to move past the value. 

 
Equivalent to Java byte code fconst_1, fconst_2, ldc, ldc_w, sipush. 
Equivalent when executed twice to Java byte code ldc2_w. 

 
push.n #n ( -- n ) 0010 xxxx 
 0x2? 
 1 CPU-clock 

n is a literal value in the range -7 to 8. The four least-significant bits of the opcode encode the value for n. The value 
is encoded as a two's-complement representation of n except that -8 (1000 binary) is decoded to be +8. 

 
Equivalent to Java byte codes aconst_null, fconst_0, iconst_m1, iconst_0, iconst_1, iconst_2, iconst_3, iconst_4, 
iconst_5. 
Equivalent for some values to Java byte code bipush. 
Equivalent when executed twice to Java byte codes dconst_0, lconst_0, lconst_1. 

 
Equivalent to ANS Forth words FALSE, TRUE. 
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replb 
Replace Byte 
 
replb ( n1 n2 -- n3 ) 1101 1010 
 0xDA 
 1 CPU-clock 

Replace the target byte of n2 with the least-significant byte of n1, leaving the result n3. The target byte is selected by 
the two least-significant bits of x, as when accessing a byte in memory. 

 
For example, if x = 0x121, n1 = 0xCCDDEEFF, and n2 = 0x12345678, then n3 = 0x12FF5678. 

  
 
 

replw 
Replace Word 
 
replw ( n1 n2 -- n3 ) 1110 1011 
 0xEB 
 1 CPU-clock 

Replace the target 16-bit word of n2 with the least-significant word of n1, leaving the result n3. The target word is 
selected by the next-to-least-significant bit of x, as when accessing a word in memory. The least-significant bit of x is 
ignored. 

 
For example, if x = 0x121, n1 = 0xCCDDEEFF, and n2 = 0x12345678, then n3 = 0xEEFF5678. 

  
 
 

replexp 
Replace Exponent 
 
replexp ( n1 n2 -- n3 ) 1011 0101 
 0xB5 
 1 CPU-clock 

Replace the exponent field and sign bits of n1 with the corresponding bits of n2. Clear the GRS extension. The 
location of the exponent field depends on fp_precision. 
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ret 
Return 
 
ret ( -- )  0110 1110 

( L: addr -- ) 0x6E 
Return from Subroutine M CPU-clocks 
 

Pop addr from the local-register stack into pc to transfer execution to addr. 
 

Equivalent to ANS Forth word EXIT. 
 
reti ( -- )  0110 1111 

( L: addr -- ) 0x6F 
Return from Interrupt M CPU-clocks 
 

Pop addr from the local-register stack into pc to transfer execution to addr. Clear the current interrupt under-service 
bit. 

  
 

rev 
Revolve Operand Stack 
 
rev ( n1 n2 n3 -- n2 n3 n1 ) 1110 0100 
 0xE4 
 1 CPU-clock 

Rotate the top three cells of the stack to bring n1 to the top. 
 

Equivalent to the run-time for the ANS Forth words FROT, ROT. 
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rnd 
Round 
 
rnd ( n1 -- n2 ) carry±  1101 0001 
 0xD1 
 1 CPU-clock 

( L: -- addr )   only when trap processed 3+M CPU-clocks 
Round n1 giving n2. Rounding is based on fp_round_mode, the sign of ct, and the GRS extension. See Rounding, 
page 24. If an increment carried out of bit 31 then set carry, clear carry otherwise. 

 
If the value of n2 is different from n1, a rounded exception is signaled. The exception is detected as a change in the 
value of bit zero. 

  

scache See _cache. 
  
 
 

sdepth See _depth. 
  
 
 

sexb 
Sign-extend byte 
 
sexb ( n1 -- n2 ) 1101 1000 
 0xD8 
 1 CPU-clock 

Copy the value of bit seven of n1 into bits eight to thirty-one, leaving n2. 
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sexw 
Sign-extend word 
 
sexw ( n1 -- n2 ) 1001 0101 
 0x95 
 1 CPU-clock 

Copy the value of bit fifteen of n1 into bits sixteen to thirty-one, leaving n2 
 

Equivalent to Java byte code i2b. 
  
 
 

shift_ 
 
The number of CPU-clock cycles required to shift the specified number of bits depends on the number of bits requested. 
While the count � eight the value (single or double) is shifted eight bits each CPU-clock cycle. When the count becomes 
less than eight the shifting is finished at one bit per CPU-clock cycle. For instance, the worst-case useful shift is 31 bits 
(either left or right) and takes eleven CPU-clock cycles—three 8-bit shifts and seven 1-bit shifts plus one CPU-clock 
cycle for setup. A 32-bit shift would take five CPU-clock cycles. The counts are modulo 64 in sign-magnitude 
representation using only the six least-significant bits for the magnitude and bit 31 for the sign. A zero in the six least-
significant bits represents zero. (Sign-magnitude representation here is a positive integer count in the six least-significant 
bits, the middle bits ignored, and bit 31 indicating the sign, zero is positive, one is negative). 
 
shift ( n1 n2 -- n3 ) carry± (n2>0) 1110 1110 
 0xEE 
 1 to 11 CPU-clocks 

Shift n1 by �n2� bits leaving the result n3. If n2 is positive the shift is to the left, each bit is shifted out through 
carry, and zero is shifted into each bit on the right. If n2 is negative the shift is to the right, each bit shifted out is 
shifted through the GRS extension, and carry is copied into each high order bit of n1 vacated by the shift. See text 
above regarding execution time and format of negative counts. 

 
Equivalent to ANS Forth word LSHIFT. 

 
shiftd ( n1 n2 n3 -- n4 n5 ) carry± (n3>0) 1110 1111 
Shift Double 0xEF 
 1 to 15 CPU-clocks 

Shift the cell pair n2n1 by �n3� bits leaving the resulting cell pair n5n4. If n3 is positive the shift is to the left, each 
bit is shifted out of n2 through carry, and zero is shifted into each bit on the right into n1. If n3 is negative the shift is 
to the right, each bit shifted out of n1 is shifted through the GRS extension, and carry is copied into each high order 
bit of n2 vacated by the shift. See text above regarding execution time and format of negative counts. 
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shl_ 
Shift Left 
 
shl #1 ( n1 -- n2 ) carry± 1110 0010 
Shift Left 0xE2 
 1 CPU-clock 

Shift n1 one bit to the left leaving the result n2. The high order bit of n1 shifted out goes into carry. The vacated bit 
on the right of n1 is filled with zero. 

 
Equivalent to ANS Forth word 2*. 

 
shl #8 ( n1 -- n2 ) carry± 1110 1100 
Shift Left Byte 0xEC 
 1 CPU-clock 

Shift n1 eight bits (one byte) to the left leaving n2. The last bit shifted out goes into carry. The vacated eight bits on 
the right are filled with zeros. 

 
shld #1 ( n1 n2 -- n3 n4 ) carry± 1110 0110 
Shift Left Double 0xE6 
 1 CPU-clock 

Shift cell pair n2n1 one bit to the left leaving the result n4n3. The high order bit of n2 shifted out goes into carry. 
The vacated bit on the right of n1 is filled with zero. 

 
Equivalent to ANS Forth word D2*. 
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shr_ 
Shift Right 
 
shr #1 ( n1 -- n2 ) 1110 0011 
Shift Right 0xE3 
 1 CPU-clock 

Shift n1 one bit to the right leaving the result n2. The bit shifted out is shifted into the GRS extension. The vacated 
bit on the left is filled with carry. 

 
shr #8 ( n1 -- n2 ) 1110 1101 
Shift Right Byte 0xED 
 1 CPU-clock 

Shift n1 eight bits (one byte) to the right leaving the result n2. The bits shifted out are shifted into the GRS 
extension. The vacated eight bits on the left are filled with carry. 

 
shrd #1 ( n1 n2 -- n3 n4 ) 1110 0111 
Shift Right Double 0xE7 
 1 CPU-clock 

Shift cell pair n2n1 one bit to the right leaving the result n4n3. The bit shifted out of n1 is shifted into the GRS 
extension. The vacated bit in n2 on the left is filled with carry. 
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skip 
Skip if Condition 
 

skip conditionally or unconditionally skips execution of the remainder of the instruction group. If the condition is 
true, skip the remainder of the instruction group and continue execution with the following instruction group. If 
condition is false, continue execution with the next instruction. 

 
WARNING: Do not skip a push.l #. Since the CPU will not have executed the push.l # opcode, the corresponding 
literal cell is not skipped. The result will be the CPU executing the literal cell. 

 
skip ( -- ) 0011 0000 
Skip Unconditionally 0x30 
 Mprefetch CPU-clocks 

Unconditionally skip the remainder of the instruction group. 
 
skipc ( -- ) 0011 0011 
Skip if Carry 0x31 
 1 (no carry)   Mprefetch (carry) CPU-clocks 

If carry is set, skip the remainder of the instruction group and continue execution with the next instruction group; 
otherwise, continue execution with the next instruction. 

 
skipn 
skipnp ( n -- ) 0011 0010 
Skip if Negative/Not Positive 0x32 
 1 (not neg)   Mprefetch (neg) CPU-clocks 

If n is negative (neither positive nor zero), skip the remainder of the instruction group and continue execution with 
the next instruction group; otherwise, continue execution with the next instruction. 

 
skipnc ( -- ) 0011 0111 
Skip if Not Carry 0x35 
 1 (carry)   Mprefetch (no carry) CPU-clocks 

If carry is clear, skip the remainder of the instruction group and continue execution with the next instruction group; 
otherwise, continue execution with the next instruction. 

 
skipnn 
skipp ( n -- ) 0011 0110 
Skip if Not Negative/Positive 0x36 
 1 (neg)   Mprefetch (not neg) CPU-clocks 

If n is not negative (either positive or zero), skip the remainder of the instruction group and continue execution with 
the next instruction group; otherwise, continue execution with the next instruction. 

 
skipnz ( n -- ) 0011 0001 
Skip if Not Zero 0x37 
 1 (zero)   Mprefetch (non-zero) CPU-clocks 
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If n is not zero, skip the remainder of the instruction group and continue execution with the next instruction group; 
otherwise, continue execution with the next instruction. 

 
skipz ( n -- ) 0011 0101 
Skip if Zero 0x33 
 1 (non-zero)   Mprefetch (zero) CPU-clocks 
 

If n is zero, skip the remainder of the instruction group and continue execution with the next instruction group; 
otherwise, continue execution with the next instruction. 

 
 

split 
Split Cell 
 
split ( n1 -- n2 n3 ) 1001 1001 
 0x99 
 1 CPU-clock 

Split n1 into two parts so that the lower-half of n1 is in the lower-half of n2 and the upper-half of n1 is in the lower-
half of n3. 

 
For example, if n1 = 0x12345678 then n2 = 0x5678 and n3 = 0x1234. 
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st 
Store Indirect to Memory 
 
st [--r0] ( n -- ) 0110 0100 
 0x64 
 1+M CPU-clocks 

Decrement r0 by four. Store the cell n into memory at the new address in r0. The two least-significant bits of the 
address are ignored and treated as zero. 

 
st [--x] ( n -- ) 0110 1000 
 0x68 
 1+M CPU-clocks 

Decrement x by four. Store the cell n into memory at the new address in x. The two least-significant bits of the 
address are ignored and treated as zero. 

 
st [r0++] ( n -- ) 0110 0110 
 0x66 
 M CPU-clocks 

Store the cell n into memory at the address in r0. Increment r0 by four. The two least-significant bits of the address 
are ignored and treated as zero. 

 
st [r0] ( n -- ) 0110 0010 
 0x62 
 M CPU-clocks 

Store the cell n into memory at the address in r0. The two least-significant bits of the address are ignored and treated 
as zero. 

 
st [x++] ( n -- ) 0110 1001 
 0x69 
 M CPU-clocks 

Store the cell n into memory at the address in x. Increment x by four. The two least-significant bits of the address are 
ignored and treated as zero. 

 
st [x] ( n -- ) 0110 0001 
 0x61 
 M CPU-clocks 

Store the cell n into memory at the address in x. The two least-significant bits of the address are ignored and treated 
as zero. 

 
st [] ( n addr -- n )  0110 0000 
 0x60 
 M CPU-clocks 

Store the cell n into memory at address addr. The two least-significant bits of the address are ignored and treated as 
zero. 
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step 
Single-Step Processor 
 
step ( -- )  0011 0100 

( L: addr1 -- addr2 ) 0x34 
 2M+2+inst CPU-clocks 

Pop addr1 from the local-register stack into pc and continue execution at addr1 for one instruction. Then perform a 
call subroutine to the single-step trap location, 0x138. addr2 is the address of the next instruction following addr1. 

 

sto 
Store Indirect to On-Chip Resource 
 
sto [] ( n addr -- n ) 1011 0000 
 0xB0 
 1 CPU-clock 

Store n into the on-chip resource register at address addr. The programmer must ensure that sto [] is not executed to 
access (even if not changed) any configuration register containing information for a memory group with a bus 
transaction in process. For valid values of addr, see On-Chip Resource Registers, page 89. 

 
sto.i [] ( n bit_addr -- n ) 1011 0001 
 0xB1 
 1 CPU-clock 

If n is non-zero, set the bit at the on-chip resource register address bit_addr; otherwise, clear the bit. For valid values 
of addr, see On-Chip Resource Registers, page 89. 

  
 
 



IGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference ManualIGNITE™ IP Reference Manual  
 
 

 
 

 

63 

sub 
Subtract 
 
sub ( n1 n2 -- n3 ) carry±  1100 1000 
 0xC8 
 1 CPU-clock 

Subtract n2 from n1 leaving the difference n3. If computing the difference required a borrow, carry is set; otherwise, 
carry is cleared. 

 
Equivalent to Java byte code isub. 

 
Equivalent to ANS Forth word -. 
 

subb 
Subtract with Borrow 
 
subb ( n1 n2 -- n3 ) carry± 1100 1010 
 0xCA 
 1 CPU-clock 

Subtract n2 and carry from n1 leaving the difference n3. If computing the difference required a borrow, carry is set; 
otherwise, carry is cleared. 

 

subexp 
Subtract Exponents 
 
subexp ( n1 n2 -- n3 n4 n5 ) 1101 0011 
 0xD3 
 2 CPU-clocks 

( L: -- addr )   only when trap processed 4+M CPU-clocks 
 

Perform the following: 
    Exponent_Field(n5) = Exponent_Field(n1) - Exponent_Field(n2) + BIAS - 1 
    Sign_Bit(n5) = Sign_Bit(n1) XOR Sign_Bit(n2) 
BIAS is 127 (0x3F800000 in bit position) for single precision and 1023 (0x3FF00000 in bit position) for double 
precision, as selected by fp_precision. 

 
Compute as described above. Clear the exponent-field bits and sign bit and set the hidden bit of n1 and n2 giving n3 
and n4, respectively. n5 is the result of the computation. After completion, if the exponent-field calculation result 
equaled or exceeded the maximum value of the exponent field (exponent result � 255 for single, exponent result � 
2047 for double) an overflow exception is signaled. If the exponent-field calculation result is less than or equal to 
zero an underflow exception is signaled. When an exception is signaled, the exponent field of n5 contains as low-
order many bits of the result as it will hold. 
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testb 
Test Bytes for Zero 
 
testb ( n -- n ) carry± 1101 1001 
 0xD9 
 1 CPU-clock 

If any byte of n is zero set carry, otherwise clear carry. 
 

testexp 
Test Exponent 
 
testexp ( n1 n2 -- n1 n2 ) carry± 1101 0100 
 0xD4 
 1 CPU-clock 

( L: -- addr )   only when trap processed 3+M CPU-clocks 
Clear the GRS extension. If the exponent field in n1 or n2 is all zeros or all ones, an exponent exception is signaled and 
carry is set; otherwise, carry is cleared. The location of the exponent field depends on fp_precision. 
 

xcg 
Exchange 
 
xcg ( n1 n2 -- n2 n1 )  1011 0010 
 0xB2 
 1 CPU-clock 

Exchange the top two operand stack cells. 
 

Equivalent to Java byte code swap. 
 

Equivalent to the ANS Forth words FSWAP, SWAP. 
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xor 
Bitwise Exclusive OR 
 
xor ( n1 n2 -- n3 ) carry clear  1100 0011 
 0xC3 
 1 CPU-clock 

Perform a bitwise EXCLUSIVE OR of n1 and n2 giving the result n3. 
 

Equivalent to Java byte code ixor. 
 

Equivalent to ANS Forth word XOR. 
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Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode 
add pc bb muls d5 push g3 73 push.n #7 27
add c0 mulu d7 push g4 74 push.n #8 28
adda e8 mxm df push g5 75 replb da
addc c2 neg c9 push g6 76 replexp b5
addexp d2 nop ea push g7 77 replw eb
and e1 norml c7 push g8 78 ret 6e
bkpt 3c normr c6 push g9 79 reti 6f
br offset 00…07 notc dd push g10 7a rev e4
br [] 4b or e0 push g11 7b pnd d1
bz offset 10…17 pop b3 push g12 7c scache 45
call offset 08…0f pop ct b4 push g13 7d sdepth 9f
call [] 4e pop g0 50 push g14 7e sexb d8
cmp cb pop g1 51 push g15 7f sexw 95
copyb d0 pop g2 52 push mode 91 sframe bf
dbr offset 18…1f pop g3 53 push la 9d shift ee
dec ct,#1 c1 pop g4 54 push lstack 9a shiftd ef
dec #4 cd pop g5 55 push r0 80 shl #1 e2
dec #1 cf pop g6 56 push r1 81 shl #8 ec
denorm c5 pop g7 57 push r2 82 shld #1 e6
di b7 pop g8 58 push r3 83 shr #1 e3
divu de pop g9 59 push r4 84 shr #8 ed
ei b6 pop g10 5a push r5 85 shrd #1 e7
eqz e5 pop g11 5b push r6 86 skip 30
expdif c4 pop g12 5c push r7 87 skipc 31
extexp db pop g13 5d push r8 88 skipn 32
extsig dc pop g14 5e push r9 89 skipnc 35
iand e9 pop g15 5f push r10 8a skipnn 36
inc #4 cc pop la bd push r11 8b skipnp 32
inc #1 ce pop lstack ba push r12 8c skipnz 37
lcache 4d pop mode b9 push r13 8d skipp 36
ld [] 40 pop r0 a0 push r14 8e skipz 33
ld [x] 41 pop r1 a1 push s0 92 split 99
ld [r0] 42 pop r2 a2 push s1 93 st [] 60
ld [--r0] 44 pop r3 a3 push s2 9e st [x] 61
ld [r0++] 46 pop r4 a4 push sa 9c st [r0] 62
ld [x++] 49 pop r5 a5 push x 98 st [--r0] 64
ld [--x] 4a pop r6 a6 push.b # byte 90 st [r0++] 66
ld.b [] 48 pop r7 a7 push.l # cell 4f st [--x] 68
ld.w [] 4c pop r8 a8 push.n #-7 29 st [x++] 69
ldepth 9b pop r9 a9 push.n #-6 2a step 34
ldo [] 96 pop r10 aa push.n #-5 2b sto [] b0
ldo.i [] 97 pop r11 ab push.n #-4 2c sto.i [] b1
lframe be pop r12 ac push.n #-3 2d sub c8
mloop 38 pop r13 ad push.n #-2 2e subb ca
mloopc 39 pop r14 ae push.n #-1 2f subexp d3
mloopn 3a pop sa bc push.n #0 20 testb d9
mloopnc 3d pop x b8 push.n #1 21 testexp d4
mloopnn 3e push 92 push.n #2 22 xcg b2
mloopnz 3f push ct 94 push.n #3 23 xor c3
mloopp 3e push g0 70 push.n #4 24
mloopz 3b push g1 71 push.n #5 25
mulfs d6 push g2 72 push.n #6 26

Table 35 CPU Mnemonics and Opcodes (Mnemonic Order) 
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Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic 
00…07 br offset 53 pop g3 8d push r13 c7 norml
08…0f call offset 54 pop g4 8e push r14 c8 sub
10…17 bz offset 55 pop g5 8f c9 neg
18…1f dbr offset 56 pop g6 90 push.b # byte ca subb
20 push.n #0 57 pop g7 91 push mode cb cmp
21 push.n #1 58 pop g8 92 push s0 cc inc #4
22 push.n #2 59 pop g9 93 push s1 cd dec #4
23 push.n #3 5a pop g10 94 push ct ce inc #1
24 push.n #4 5b pop g11 95 sexw cf dec #1
25 push.n #5 5c pop g12 96 ldo [] d0 copyb
26 push.n #6 5d pop g13 97 ldo.i [] d1 rnd
27 push.n #7 5e pop g14 98 push x d2 addexp
28 push.n #8 5f pop g15 99 split d3 subexp
29 push.n #-7 60 st [] 9a push lstack d4 testexp
2a push.n #-6 61 st [x] 9b ldepth d5 muls
2b push.n #-5 62 st [r0] 9c push sa d6 mulfs
2c push.n #-4 63 9d push la d7 mulu
2d push.n #-3 64 st [--r0] 9e push s2 d8 sexb
2e push.n #-2 65 9f sdepth d9 testb
2f push.n #-1 66 st [r0++] a0 pop r0 da replb
30 skip 67 a1 pop r1 db extexp
31 skipc 68 st [--x] a2 pop r2 dc extsig
32 skipn 69 st [x++] a3 pop r3 dd notc
32 skipnp 6a a4 pop r4 de divu
33 skipz 6b a5 pop r5 df mxm
34 step 6c a6 pop r6 e0 or
35 skipnc 6d a7 pop r7 e1 and
36 skipnn 6e ret a8 pop r8 e2 shl #1
36 skipp 6f reti a9 pop r9 e3 shr #1
37 skipnz 70 push g0 aa pop r10 e4 rev
38 mloop 71 push g1 ab pop r11 e5 eqz
39 mloopc 72 push g2 ac pop r12 e6 shld #1
3a mloopn 73 push g3 ad pop r13 e7 shrd #1

3b mloopz 74 push g4 ae pop r14 e8 adda
3c bkpt 75 push g5 af e9 iand

3d mloopnc 76 push g6 b0 sto [] ea nop
3e mloopnn 77 push g7 b1 sto.i [] eb replw
3e mlooppp 78 push g8 b2 xcg ec shl #8
3f mloopnz 79 push g9 b3 pop ed shr #8
40 ld [] 7a push g10 b4 pop ct ee shift
41 ld [x] 7b push g11 b5 replexp ef shiftd
42 ld [r0] 7c push g12 b6 ei f0
43 7d push g13 b7 di f1
44 ld [--r0] 7e push g14 b8 pop x f2
45 scache 7f push g15 b9 pop mode f3
46 ld [r0++] 80 push r0 ba pop lstack f4
47 81 push r1 bb add pc f5
48 ld.b [] 82 push r2 bc pop sa f6
49 ld [x++] 83 push r3 bd pop la f7
4a ld [--x] 84 push r4 be lframe f8
4b br [] 85 push r5 bf sframe f9
4c ld.w [] 86 push r6 c0 add fa
4d lcache 87 push r7 c1 dec ct,#1 fb
4e call [] 88 push r8 c2 addc fc
4f push.l # cell 89 push r9 c3 xor fd
50 pop g0 8a push r10 c4 expdif fe
51 pop g1 8b push r11 c5 denorm ff
52 pop g2 8c push r12 c6 normr

Table 36 CPU Mnemonics and Opcodes (Opcode Order) 
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The Interrupt Controller (INTC) allows multiple 

requests to gain, in an orderly and prioritized manner, the 
attention of the CPU. The INTC supports up to eight 
prioritized interrupt requests. Interrupts are received from 
the bit inputs through ioin. 
 
Resources 
  
The INTC consists of several registers and associated 
control logic. Interrupt zero, which corresponds to bit zero 
of the registers, has the highest priority; interrupt seven, 
which corresponds to bit seven of the registers, has the 
lowest priority. The INTC and related registers include: 
 
•  Bit input register, ioin: bit inputs configured as 
interrupt requests or general bit inputs. See Figure 11. 
•  Interrupt pending register, ioip: indicates which 
interrupts have been recognized, but are waiting to be 
prioritized and serviced. See Figure 12. 
•  Interrupt under service register, ioius: indicates which 
interrupts are currently being serviced. See Figure 13. 
•  Interrupt enable register, ioie: indicates which ioin 
bits are to be recognized as interrupt requests. See Figure 
15. 
The bit inputs are low true used as interrupt requests or as 
directly readable bit inputs. Interrupt progress status is 
read as low true in ioin and as high true in ioie and ioius. 
 
Operation 
  
 An interrupt request can arrive from a zero bit in ioin, 
typically from an external input low, or from the CPU 
writing the bit low. Interrupt request zero comes from ioin 
bit zero; interrupt request one comes from ioin bit one, the 
other interrupt requests are similarly assigned. 

Associated with each of the eight interrupt requests is 
an interrupt service routine (ISR) executable-code vector 
located in memory. See Figure 3. A single ISR executable-
code vector for a given interrupt request is used for all 
requests on that interrupt. It is programmed to contain 
executable code, typically a branch to the ISR. 
 
Interrupt Request Servicing 
  

 When an interrupt request occurs, the corresponding 
bit in ioip is set, and the interrupt request is now a 
pending interrupt. Pending interrupts are prioritized each 
CPU-clock cycle. The interrupt_en bit in mode holds the 
current global interrupt enable state. It can be set with the 
CPU enable-interrupt instruction, ei; cleared with the 
disable-interrupt instruction, di; or changed by modifying 
mode. Globally disabling interrupts allows all interrupt 
requests to reach ioip, but prevents the pending interrupts 
in ioip from being serviced. 

When interrupts are enabled, interrupts are 
recognized by the CPU between instruction groups, just 
before the execution of the first instruction in the group. 
This allows short, atomic, uninterruptable instruction 
sequences to be written easily without having to save, 
restore, and manipulate the interrupt state. The stack 
architecture allows interrupt service routines to be 
executed without requiring registers to be explicitly saved, 
and the stack caches minimize the memory accesses 
required when making additional register resources 
available. 

If interrupts are globally enabled and the highest-
priority ioip bit has a higher priority than the highest-
priority ioius bit, the highest-priority ioip bit is cleared, 
the corresponding ioius bit is set, and the CPU is 
interrupted just before the next execution of the first 
instruction in an instruction group. This nests the interrupt 
servicing, and the pending interrupt is now the current 
interrupt under service. The ioip bits are not considered 
for interrupt servicing while interrupts are globally 
disabled, or while none of the ioip bits has a higher 
priority than the highest-priority ioius bit. 

Unless software modifies ioius, the current interrupt 
under service is represented by the highest-priority ioius 
bit currently set. reti is used at the end of ISRs to clear the 
highest-priority ioius bit that is set and to return to the 
interrupted program. If the interrupted program was a 
lower-priority interrupt service routine, this effectively 
“unnests” the interrupt servicing. 
 
Recognizing Interrupts 
  
 An ioin bit is configured to recognize an interrupt 
request source if the corresponding ioie bit is set. Once a 
zero reaches ioin, it is available to request an interrupt. An 
interrupt request is forced in software by clearing the 
corresponding ioin bit or by setting the corresponding ioip 
bit. Individually disabling an interrupt request by clearing 

Interrupt Controller 
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its ioie bit prevents a corresponding zero bit in ioin from 
being recognized. 

 
While an interrupt request is being processed, until its 

ISR terminates by executing reti, the corresponding ioin 
bit is not zero-persistent and follows the sampled level of 
the external input pin. Specifically, for a given interrupt 
request, while its ioie bit is set, and its ioip bit or ioius bit 
is set, its ioin bit is not zero-persistent. This effect can be 
used to disable zero-persistent behavior on non-
interrupting bits. See Zero Persistent 
 
ISR Processing 
 
 When an interrupt request is recognized by the CPU, 
a call to the corresponding ISR executable-code vector is 
performed, and interrupts are blocked until an instruction 
that begins in byte one of an instruction group is executed. 
To service an interrupt without being interrupted by a 
higher-priority interrupt: 
•  the ISR executable-code vector typically contains a 
four-byte branch, and 
•  the first instruction group of the interrupt service 
routine must globally disable interrupts. See the code 
example in Table 37. 
 

 

 
Table 37 Code Example: ISR Vectors 
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If interrupts are left globally enabled during ISR 

processing, a higher-priority interrupt can interrupt the 
CPU during processing of the current ISR. This allows 
devices with more immediate servicing requirements to be 
serviced promptly even when frequent interrupts at many 
priority levels are occurring. 

Note that there is a delay of one CPU-clock cycle 
between the execution of ei, di, or pop mode and the 
change in the global interrupt enable state taking effect. 
To ensure the global interrupt enable state change takes 
effect before byte zero of the next instruction group, the 
state-changing instruction must not be the last instruction 
in the current instruction group. 

If the global interrupt enable state is to be changed by 
the ISR, the prior global interrupt enable state can be 
saved with push mode and restored with pop mode within 
the ISR. Usually a pop mode, reti sequence is placed in 
the same instruction group at the end of the ISR to ensure 
that reti is executed, and the local-register stack unnests, 
before another interrupt is serviced. Since the return 
address from an ISR is always to byte zero of an 
instruction group (because of the way interrupts are 
recognized), another interrupt can be serviced 
immediately after execution of reti. See the code example 
in Table 37. 

As described above for processing ISR executable-
code vectors, interrupt requests are similarly blocked 
during the execution of all traps. This allows software to 
prevent, for example, further data from being pushed on 
the local-register stack due to interrupts during the 
servicing of a local-register-stack overflow exception. 
When resolving concurrent trap and interrupt requests, 
interrupts have the lowest priority. 

 

 
 Eight external bit inputs are available in bit input 
register ioin. They are shared for use as interrupt requests 
and as bit inputs for general use by the CPU. 
 
Resources 
 
 The bit inputs consist of several registers, package 
pins, and associated input sampling circuitry. These 
resources include: 

•  Bit input register, ioin: bit inputs configured as 
interrupt requests or general bit inputs. See Figure 11. 
•  Interrupt enable register, ioie: indicates which ioin 
bits are to be recognized as interrupt requests. See Figure 
15. 
•  Interrupt pending register, ioip: indicates which 
interrupts have been recognized, but are waiting to be 
prioritized and serviced. See Figure 12. 
•  Interrupt under service register, ioius: indicates which 
interrupts are currently being serviced. See Figure 13. 
•  Bit input pins, _I _N[7:0]. 
 
Input Sampling 
 
 The bit inputs are sampled from _I _N[7:0] every  CPU-
clock cycle and clocked into the IOIN register. 
 

 

CPU-clock

1 of 8

Zero-
Persistence

Control

zero-persist INx
INTC

write INx
CPU

D Q

CLK

ioXin_i
INx

 
Figure 10 Bit Input Block Diagram 
 

 
Zero Persistent 

The bit inputs reaching ioin are normally zero-
persistent. That is, once an ioin bit is zero, it stays zero 
regardless of the bit state at subsequent samplings until 
the bit is “consumed” and released, or is written with a 
one by the CPU. Zero-persistent bits have the advantage 
of both edge-sensitive and level-sensitive inputs, without 
the noise susceptibility and non-shareability of edge-
sensitive inputs. Under certain conditions during ioin 
interrupt servicing, the ioin bits are not zero-persistent. An 
effect of the INTC can be used to disable zero-persistent 
behavior on the bits. See General-Purpose Bits  below. 

The code examples assume both zero persistence and 
input sampling. When both zero persistence and input 

Bit Inputs 
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sampling are disabled the inputs read read in the same 
manner and behave conventionally. 
 

 
Table 38 Code Example: Bit Input Without Zero-
Persistence 

 
 
 
Interrupt Usage 
 An ioin bit is configured as an interrupt request 
source when the corresponding ioie bit is set. While an 
interrupt request is being processed, until its ISR 
terminates by executing reti, the corresponding ioin bit is 
not zero-persistent and follows the sampled level of the 
external input. Specifically, for a given interrupt request, 
while its ioie bit is set, and its ioip bit or ioius bit is set, its 
ioin bit is not zero-persistent. This effect can be used to 
disable zero-persistent behavior on non-interrupting bits 
(see below). 
 
General-Purpose Bits 
 If an ioin bit is not configured for interrupt requests 
then it is a zero-persistent general-purpose ioin bit. 
Alternatively, by using an effect of the INTC, general-
purpose ioin bits can be configured without zero-
persistence. Any bits so configured should be the lowest-
priority ioin bits to prevent blocking a lower-priority 
interrupt. They are configured by setting their ioie and 
ioius bits. The ioius bit prevents the ioin bit from zero-
persisting and from being prioritized and causing an 
interrupt request. See the code example in Table 38. 
 

CPU  Usage 
 Bits in ioin are read and written by the CPU as a 
group with ldo [ioin] and sto [ioin], or are read and 
written individually with ldo.i [ioXin_i] and sto.i 
[ioXin_i]. Writing zero bits to ioin has the same effect as 
though the external bit inputs had transitioned low for one 
sampling cycle, except that there is no sampling delay. 
This allows software to simulate events such as external 
interrupt requests. Writing one bits to ioin, unlike data 
from external inputs when the bits are zero-persistent, 
releases persisting zeros to accept the current sample. The 
written data is available immediately after the write 
completes. The CPU can read ioin at any time, without 
regard to the designations of the ioin bits, and with no 
effect on the state of the bits. The CPU does not consume 
the state of ioin bits during reads. See the code examples 
in Table 39. 
 

 
Table 39 Code Example: CPU Usage of Bit 
Inputs 
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 To perform a “real-time” external-bit-input read on 
zero-persistent bits, ones bits are written to the bits of 
interest in ioin before reading ioin. This releases any 
persisting zeros, latches the most recently resolved 
sample, and reads that value. Bits that are not configured 
as zero-persistent do not require this write. Note that any 
value read can be as much as two worst-case sample 
delays old. To read the values currently on the external 
inputs requires waiting two worst-case sample delays for 
the values to reach ioin. See the code example in Table 40. 

Table 40 Code Example: CPU “Real-Time” Bit 
Input Read 
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Bit Outputs  

 
Eight general-purpose bit outputs can be set high or 

low by the CPU. The bits are available in the bit output 
register, ioout. 
 
Resources 
 
 The bit outputs consist of a register and pins. These 
resources include: 
•  Bit output register, ioout: bits that were last written 
by the CPU. See Figure 15. 
•  Bit outputs, out[7:0] 
 
 

 
The on-chip resource registers comprise portions of 

various functional areas on the CPU including the CPU, 
INTC, and bit inputs. The registers are addressed from 
the CPU in their own address space using the 
instructions ldo  and sto at the register level, or ldo. and 

sto. at the bit level (for those registers that have bit 
addresses). On other processors, resources of this type  
are often either memory-mapped or opcode-mapped. By 
using a separate address space for these resources, the 
normal address space remains uncluttered, and opcodes 
are preserved. Except as noted, all registers are readable 
and writable. Areas marked “Reserved Zeros” contain 
no programmable bits and always return zero. Areas 
marked “Reserved” contain unused programmable bits. 
Both areas might contain functional programmable bits 
in the future. 
  

The first several registers are bit addressable in 
addition to being register addressable. This allows the 
CPU to modify individual bits without corrupting 
other bits that might be changed concurrently by 
INTC logic.  
 
 The bits are read and written by the CPU as a 
group with ldo [ioout] and sto [ioout], or are read and 
written individually with ldo.i [ioXout_i] and sto.i 
[ioXout_i].  When written, the new values are available 
immediately after the write completes. 

 

On-Chip Resource Registers 

00  ioin            Bit Input

Bit Address  Mnemonic    Description
07              io7in_i     I/O bit 7 input
06              io6in_i     I/O bit 6 input
05              in6in_i     I/O bit 5 input
04              io4in_i     I/O bit 4 input
03              io3in_i     I/O bit 3 input
02              io2in_i     I/O bit 2 input
01              io1in_i     I/O bit 1 input
00              io0in_i     I/O bit 0 input

8   7   6   5   4   3   2   1   031
Reserved Zeros

 Figure 11 Bit Input Register 
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 Contains sampled data from inputs[7:0]. ioin is the source of inputs for all consumers of bit inputs. Bits are zero-
persistent: once a bit is zero in ioin it stays zero until consumed by the INTC, or written by the CPU with a one. 
Under certain conditions bits become not zero-persistent. See Bit Inputs.  The bits can be individually read, set and 
cleared to prevent race conditions between the CPU and the interrupt controller logic. 
 

20  ioip            Interrupt Pending

Bit Address   Mnemonic                      Description
27              io7ip_i     I/O bit 7 interrupt pending
26              io6ip_i     I/O bit 6 interrupt pending
25              io5ip_i     I/O bit 5 interrupt pending
24              io4ip_i     I/O bit 4 interrupt pending
23              io3ip_i     I/O bit 3 interrupt pending
22              io2ip_i     I/O bit 2 interrupt pending
21              io1ip_i     I/O bit 1 interrupt pending
20              io0ip_i     I/O bit 0 interrupt pending

8   7   6   5   4   3   2   1   031
Reserved Zeros

 
Figure 12 Interrupt Pending Register 

 
Contains interrupt requests that are waiting to be serviced. Interrupts are serviced in order of priority (0 = highest, 7 

= lowest). An interrupt request from an I/O-channel transfer or from int occurs by the corresponding pending bit being  
set. Bits can be set or cleared to submit or withdraw interrupt requests. When an ioip bit and corresponding ioie bit are 
set, the corresponding ioin bit is not zero-persistent. See Interrupt Controller.  The bits can be individually read, set and 
cleared to prevent race conditions between the CPU and the interrupt controller logic. 
 

40  ioius            Interrupt Under Service

Bit Address   Mnemonic                                Description
47             io7ius_i     I/O bit 7 interrupt under service
46             io6ius_i     I/O bit 6 interrupt under service
45             io5ius_i     I/O bit 5 interrupt under service
44             io4ius_i     I/O bit 4 interrupt under service
43             io3ius_i     I/O bit 3 interrupt under service
42             io2ius_i     I/O bit 2 interrupt under service
41             io1ius_i     I/O bit 1 interrupt under service
40             io0ius_i     I/O bit 0 interrupt under service

8   7   6   5   4   3   2   1   031
Reserved Zeros

 
Figure 13 Interrupt Under Service Register 
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 Contains the current interrupt service request and those that have been temporarily suspended to service a higher-
priority request. When an ISR executable-code vector for an interrupt request is executed, the ioius bit for that interrupt  
request is set and the corresponding ioip bit is cleared. When an ISR executes reti, the highest-priority interrupt under-
service bit is cleared. The bits are used to prevent interrupts from interrupting higher-priority ISRs. When an ioius bit and 
corresponding ioie bit are set, the corresponding ioin bit is not zero-persistent. See Interrupt Controller. 

The bits can be individually read, set and cleared to prevent race conditions between the CPU and INTC logic. 
 

60  ioout            Bit Output

Bit Address   Mnemonic          Description
67              io7out_i     I/O bit 7 output
66              io6out_i     I/O bit 6 output
65              io5out_i     I/O bit 5 output
64              io4out_i     I/O bit 4 output
63              io3out_i     I/O bit 3 output
62              io2out_i     I/O bit 2 output
61              io1out_i     I/O bit 1 output
60              io0out_i     I/O bit 0 output

8   7   6   5   4   3   2   1   031
Reserved Zeros

 
Figure 14 Bit Output Register 

 
Contains the bits from CPU bit-output operations. Bits appear on OUT[7:0] immediately after writing. 

The bits can be individually read, set and cleared. 
 

80  ioie             Interrupt Enable

Bit Address   Mnemonic                    Description
87             io7ie_i     I/O bit 7 interrupt enable
86             io6ie_i     I/O bit 6 interrupt enable
85             io5ie_i     I/O bit 5 interrupt enable
84             io4ie_i     I/O bit 4 interrupt enable
83             io3ie_i     I/O bit 3 interrupt enable
82             io2ie_i     I/O bit 2 interrupt enable
81             io1ie_i     I/O bit 1 interrupt enable
80             io0ie_i     I/O bit 0 interrupt enable

8   7   6   5   4   3   2   1   031
Reserved Zeros

 
Figure 15 Interrupt Enable Register 
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Allows a corresponding zero bit in ioin to request the corresponding interrupt service. When an enabled interrupt 
request is recognized, the corresponding ioip bit is set and the corresponding ioin bit is no longer zero-persistent. See 
Interrupt Controller, page 79. The bits can be individually read, set and cleared. Bit addressability for this register is 
an artifact of its position in the address space, and does not imply any race conditions on this register can exist.  

 

 

31 0 
120 mfltaddr Memory Fault Address Register 

Register is read-only.
di

 
d  

Memory Fault Address

 
Figure 16 Memory Fault Address Register 

 
 
 When a memory page-fault exception occurs during a memory read or write, mfltaddr contains the address that 
caused the exception. The contents of mfltaddr and mfltdata are latched until the first read of mfltaddr after the fault. 
After reading mfltaddr, the data in mfltaddr and mfltdata are no longer valid. 
 

 

31 0

mfltdata Memory Fault  Data Register  140 

Register is read-only.
di

   
d  

Memory Fault Data

 
Figure 17 Memory Fault Data Register 

 
When a memory page-fault exception occurs during a memory write, mfltdata contains the data to be stored 

at mfltaddr. The contents of mfltaddr and mfltdata are latched until the first read of mfltaddr after the fault. 
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 Miscellaneous C 

R i t31 0 5 6 7

1A0  miscc 

Mnemonic Description 

memory system posted-write enablemspwe

Reserved Zeros

 
Figure 18 Miscellaneous C Register 

 
If set, enables a one-level CPU posted-write buffer, which allows the CPU to continue executing after a write to 

memory occurs. A posted write has precedence over subsequent CPU reads to maintain memory coherency. If clear, the 
CPU must wait for writes to complete before continuing. 
 
Onchip Resource Register values upon CPU reset: 
 Table 40 provides the values of all of the onchip registers upon the occurrence of a reset event to the IGNITE CPU. 

 
Address Register Description Initial value 
    
000 ioin Bit Input Register 0000  00FF 
020 ioip Interrupt Pending Register 0000  0000 
040 ioius Interrupt Under Service Register 0000  0000 
060 ioout Bit Output Register 0000  00FF 
080 ioie Interrupt enable Register 0000  0000 
120 mfltaddr Memory Fault Address Register xxxx  xxxx 
140 mfltdata Memory Fault Data Register xxxx  xxxx 
1A0 misc Miscellaneous C Register 0000  0000 
 

Table 40 Resource Register Reset Values 
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This section of the document provides all of the information a designer will require designing the logic to interface with 
memory and other peripheral devices for the Ignite CPU processor core embodied as a net-list in EDIF file format. 
 
Bus Interface 
 
The bus interface of the Ignite CPU is relatively simple. There are no special requirements other than depicted in the 
timing diagrams. 
 
Posted Writes 
 
The Ignite CPU supports a one-deep posted write to allow it to continue execution while the write to the external device 
is in progress. Typically CPU execution will subsequently stall waiting for the next bus operation to start.  
 
 
SYMBOL TYPE DESCRIPTION 
*RESET   I RESET: Asserting this signal (active low) causes the CPU to initialize all 

internal registers and begin execution at the hardware reset location 

CLOCK   I CLOCK INPUT: This is the clock input to the processor provided by a clock 
source. The processor runs at the same frequency of the clock input 

MAR [31:0]   O ADDRESS OUTPUT: This is the 32-bits of address bus produced by the 
processor. The address bus is non-multiplexed 

MDR [31:0]  I/ O DATA OUTPUT: This is 32-bits of data bus produced by the processor. The data 
bus is non-multiplexed and conforms to big-endian standard 

*INB [7:0]   I BIT INPUTS: These active low signals act as general or interrupts inputs to the 
processor 

OUTB [7:0]   O BIT OUTPUTS: These byte signals acts as general-purpose outputs from the 
processor. These are bit programmable. 

WR   O READ/WRITE: This acts as the Read/Write signal produced by the processor. A 
logic HIGH serves as Write. A logic LOW serves as Read. 

REQ   O REQUEST: This output signal indicates the beginning of a read or write transfer 
cycle of the processor from an idle state 

DVAL   I DATA VALID: This input signal generated by external indicates the completion of 
a read or write transfer to the processor 

*FAULTB   I MEMORY FAULT: This active low input signal generated by external logic 
indicates a faulty memory location access by the processor 

 
Table 41 Signal Descriptions 

Reset *RESET, input 
 
When asserted active (low), completely initializes the CPU. When de-asserted, CPU execution begins at the address 
0x80000008. This signal is internally synchronized with the CPU clock. 
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The *Reset signal must stay activate for at least 4 clock cycles for the processor to reach its quiescent state. 
 
Clock CLOCK, input 
 
There is no phase lock loop built into the Ignite IP and therefore all operations within the Ignite IP run off this clock input 
Baring a few, all instructions run in a single cycle clock as mentioned in the Ignite Reference Manual.  
 
Address MAR [31:0], output 
 
The address bus provides non-multiplexed address for current CPU bus access. The rising edge of request signal 
indicates the start of bus read/write transfer cycle, which also indicates a valid address on the bus. 
 
The address remains valid until the end of the rising edge of the CPU clock following a data valid dval input going active. 
The two least-significant bits of the address are ignored when fetching or writing cell-wide data. The first valid address 
after a reset has been active is the CPU reset address. 
 
Data MDR [31:0], input/output 

 
Provides 32 bit data input when write is inactive. Provides 32 bit data output when write is active. 
The rising edge of Request signal indicates valid write data.  
 
The write data remains valid until the end of the rising edge of the CPU clock following a data valid dval input going 
active. For read operations the read data needs to meet the setup and hold time with respect to rising edge of CPU clock 
after Data valid signal dval goes active. 
 
The interface to the ignite_ip EDIF file logic consists of a 32-bit data in bus mdi<31:0> and a 32-bit data out bus 
mdo<31:0>. The bi-directional pin driver of the FPGA combines these to form MDR <31:0>. 
 
Input, INB [7:0], input 
 
Bit inputs can be used for general-purpose inputs or as interrupt requests. These inputs are accessible by the CPU through 
ioin register. These inputs need to be synchronized with the CPU clock before presenting to the Ignite IP FPGA device. 
 
Output, OUTB [7:0], output 
 
Bit outputs for general-purpose use. These bits are accessible by the CPU through the ioout register.
 
Read/Write WR, output

When active, indicates that the current bus cycle is a write cycle. When inactive, indicates the current bus cycle is a read 
cycle. This signal is active concurrent with the REQ signal that signifies the start of a bus transfer cycle. This signal goes 
active at the rising edge of the CPU clock.
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CPU data transfer state, REQ, output 
 
This signal goes active at the rising edge of the CPU clock indicating the beginning of a bus transfer cycle.  
 
Data Valid DVAL, output 
 
This signal generated by external logic indicates to the Ignite CPU as to when it is time to complete the current bus 
transfer cycle. This active High signal is sampled by the rising edge of the CPU clock. If there is a pending bus cycle, 
then the CPU will immediately start the next transfer on the rising edge of the CPU clock. 
 
Memory Fault *FAULTB, input 
 
If the pin *faultb is asserted (active low), and memory fault traps are enabled, following a request at the beginning 
of a bus transfer cycle, then the CPU will immediately transfer execution to the memory fault trap location to handle 
the memory fault. This signal is provided by an external logic implementing a memory manager function. Memory 
fault traps are enabled by bit 27 of the mode register. The address and write-data that caused the memory fault saved 
in internal registers and are retrieved allowing memory fault recovery. The *faultb going active has a required 
setup time and should also be driven inactive after the invalid memory cycle completes. The memory manager 
generating the *faultb signal must also generate dval to complete the current cycle. 
 
If *faultb is asserted, and memory fault traps are not enabled, operation will be unaffected, provided that 
*faultb is removed in a timely manner. 
 
The *faultb signal might be generated by external logic because of either memory errors detected by parity 
circuitry or memory non-availability caused by memory page swapping.
 
Bus Interface  
 
The bus interface for the Ignite CPU employs a very simple request/acknowledge protocol that has been the traditional 
mechanism for most embedded processors. 
 
There are two modes of bus transaction that are intended for single and multiple access mode of access respectively. 
 
The Ignite processor IP is a completely synchronous design. All timing information will be stated with respect to the 
clock edge, period or duty cycle of the clock that it is operated from. 
 
Timing Information 
 
The timing specifications for the part as mentioned in the IP data sheet were derived post synthesis using TSMC library 
of parts for the 0.18-micron technology, and will be different for other technologies. 

 
All output drivers will be specific to the user implementation.  
  
All inputs have a setup time with respect to the clock input of the device. All outputs have a clock to output time delay 
referenced to the clock input of the device. 
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Request

Data Valid

Data

Write

CPU Clk

Valid Data Valid Data

Ignite CPU Read

CPU State Bus Idle Read X fer Read X ferBus Idle Bus Idle

Address Valid A ddress Valid A ddress

1

3

5

2

4

6

7

8

 
 

No Symbol Description Min Typical Max Notes 
1 t_addrout Address valid out 

from clock rise 
TCHOH 

Note 3      or 
 TCHOL 

Note 4 
  Foundry library 

specific Note2 
2 t_addrinval Address invalid 

from clock rise 
TCHOH 

Note 3      or 
 TCHOL 

Note 4 
  Foundry library 

specific Note2 
3 t_reqvalout Request valid out 

from clock rise 
TCHOH 

Note 3    Foundry library 
specific Note2 

4 t_reqinval Request invalid 
from clock rise 

TCHOL 
Note 4    

5 t_rdatasetup Read Data setup  TIOOCK 
Note 5    

6 t_rdatahold Read Data Hold TIOHLDCK 
Note 6    

7 t_dvalsetup Data valid setup 
to clock rise 

0.6T_clkperiod Note1   Meeting Min 
parameter assures 1 
cycle memory 
access Note1 

8 t_dvalhold  Data valid Hold TIOHLDCK 
Note 6    

Table 42  CPU Read Timing Parameters 
 
Notes: 
Note1 T_clkperiod refers to the clock period of the CPU clock. This is an absolutely critical parameter to meet for 1 

cycle memory access 
Note 2 These parameters in this row are defined by the Foundry provided library for a specific semiconductor geometry 

and process 
Note 3 This is the delay as specified by the component library for clock High to output High  
Note 4 This is the delay as specified by the component library for clock High to output Low  
Note 5 This is the Setup time before the clock active signal as specified by component library 
Note 6 This is the Hold time after the clock active signal as specified by component library 
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Request

Data Valid

Data

Write

CPU Clk

Valid Data Valid Data

Ignite CPU Write

CPU State Bus Idle Write  Xfer Write  Xfer

Address Valid Address Valid Address

Bus Idle Bus Idle

10

11

7

12

13

8

 
No Symbol Description Min Typical Max Notes 
10 t_dataout Data valid out 

from clock rise 
TCHOH 

Note 3      or 
 TCHOL 

Note 4 
  Foundry library 

specific Note2 
12 t_dataz Data tri-state from 

clock rise 
TIOCKP 

Note 3+ TIOTHZ 
Note7     Foundry library 

specific Note2 
11 t_wrtvalout Write valid out 

from clock rise 
TCHOH 

Note 3   Foundry library 
specific Note2 

13 t_wrtinval Write invalid 
from clock rise 

TCHOL 
Note 4    

7 t_dvalsetup Data valid setup 
to clock rise 

0.6T_clkperiod Note1   Meeting Min parameter 
assures 1 cycle memory 
access Note1 

8 t_dvalhold  Data valid Hold TIOHLDCK 
Note 6    

Table 43 CPU Write Timing Parameters 
 
Notes: 
Note1 T_clkperiod refers to the clock period of the CPU clock. This is an absolutely critical parameter to meet for 1 

cycle memory access 
Note 2 These parameters in this row are defined by the Foundry provided library for a specific semiconductor geometry 

and process 
Note 3 This is the delay as specified by the component library for clock High to output High  
Note 4 This is the delay as specified by the component library for clock High to output Low  
Note 5 This is the Setup time before the clock active signal as specified by component library 
Note 6 This is the Hold time after the clock active signal as specified by component library 
Note7 This is the input to high-impedance delay as specified by component library 
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CPU Clk

Request

Address

Data Valid

Data

Write

Ignite CPU Multiple Access Read 

CPU State

New AddressValid Address

Read Xfer

Valid Data Valid Data Valid Data

New Address

Read Xfer Read XferIdle Idle

 
 

CPU Clk

Request

Address

Data Valid

Data

Write

Valid Data

New Address

Ignite CPU Multiple Access Write 

New Data

Valid Address

CPU State Idle Write  Xfer

New Address

New Data

Write  Xfer Write  Xfer Bus Idle
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Request

CPU Clk

Ignite Memory Fault

CPU State Bus Idle Read/Write Xfer Bus Idle Bus Idle

Address INvalid Address Vector Address

Data Valid

7

8

FAULTB*
7

8

Read Xfer for FAULTB Vector

 
 

No Symbol Description Min Typical Max Notes 
7 t_dvalsetup Data valid setup 

to clock rise 
0.6T_clkperiod Note1   Meeting Min 

parameter assures 1 
cycle memory 
access Note1 

8 t_dvalhold  Data valid Hold TIOHLDCK 
Note 6    

Table 44 Memory Fault Operation Timing Parameters 
 
Notes: 
Note1 T_clkperiod refers to the clock period of the CPU clock. This is an absolutely critical parameter to meet for 1 

cycle memory access 
Note 6 This is the Hold time after the clock active signal as specified by component library 
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