PTSC

IGNITE" Intellectual Property
Reference Manual

Revision 1.0

PTSC

10989 Via Frontera
San Diego, CA 92127
1 (858) 674 5000 voice
1 (858) 674 5005 fax
Www.ptsc.com

PTSC IGNITE™ |P Reference Manual

Copyright © 1995 George William Shaw, All Rights Reserved.
Copyright © 1995-1999 Patriot Scientific Corporation
Printed in the United States of America

Printing Date: 2002 March 18

For company and product information, access www.ptsc.com. Patriot Scientific Corporationis publicly traded over the
counter, symbol PTSC.

ShBoomand IGNITE aretrademarks of Patriot Scientific Corporation. Any other brands and products used withinthis
document are trademarks or registered trademarks of their respective owners.

The technology discussed in this document may be covered by one or more of the following US patents:
5,440,749; 5,530,890; 5,604,915; 5,659,703; 5,784,584, 5,809,336. Other US and Foreign patents pending.

IMPORTANT NOTICE

Disclaimer

Patriot Scientific Corporation (PTSC) reservestheright to make changesto its products or specificationsat any time, or
to discontinue any product, without notice. PT SC advisesits customersto obtain thelatest product information available
before designing-in or purchasing its products. PTSC assumes no responsibility for the use of any circuitry described
other than the circuitry embodied in a PT SC product. PTSC makes no representationsthat the circuitry described herein
isfree from patent infringement or other rights of third parties, which may result fromits use. No license is granted by
implication or otherwise under any patent, patent rights or other rights, of PTSC. PTSC assumes no liability for any
product designs, customer designs, design assistance, or use of its products.

Information within this document is subject to change without notice, but was believed to be accurate at the time of
publication. No warranty of any kind, including but not limited to implied warranties of merchantability or fitnessfor a
particular application, are stated or implied. PTSC and the author assume no responsibility for any errors or omissions,
and disclaim responsibility for any consequences resulting from the use of the information included herein.

Critical Applications Policy

Some applications of semiconductor productsinvolve potentia risksof persona injury, death, severe property damage, or
environmental damage. PTSC products are not authorized for use in such applications without a specific written
agreement signed by the appropriate PT SC officer. Use of TSC productsin such applicationsisunderstood to befully at
therisk of the customer.

IGNITE™ |P Reference Manual PTSC

Contents

IIMPORTANT NOTICE ...t esesisesesssesssessesseessssesssssestssssssessesesesseetsesseetsseetsessstessssestsestestsseststssssesesiss ii
I TES ol = T T PP PP ii
CritiCal APPICALIONS POIICYccuvieeueieiiieeeee ettt e e e et e eeteeeeteeeeneeesteeenseeesseeeaseesseeensesensesanseesnns ii

LTS T Vi

[ITADIES. ...ttt asnenenen et ne et eaenenenen st et teeaeneneneeneaeeae vii
[IMUICT ODI OCESSOE UM ...ttt e e et st st sesesesesesnsesesssasasassesesesesesnsnsnsnsnsassssesssnsssnenessnsnsssssssssssesessens 3
0T ESS SPACE. ...ttt ettt et eeeteeateeaeeeseaeteaseenteanseeseeeseesseesseenseensesnesaneeaneasseenseensesnsesnsesseesrees E%
lﬁegisters T S TS 5
rOgraMMING MOGE! ..o §|

[JNSETUCHION SEE OVEI VIBW.....c.eieieit ettt ettt sttt er s b es e ettt aesnsnenerene 7
[JALU OPEIGLIONS...........oeveveeveeeeeeeeeeeeeeeess s eerrn s s eneesesesnsnsnsnescnsasassssesssesesssnsnsnsnsnsssnsasassesssnsesnenns 8
Branches, SKIPS, QN0 LOOPS.ccuvecuieeieuieetieeteecteecteeeteeeteeeteeeeeteeeteeeteeeteeeseeeseeaseeseeneeesseeseesseeseesesssesseesnees 10|
T TS —— 10
DAL M OVEIMIENE. ... eteeiiei it e et e et e e e sttt e e eseeesasseeeeesesssassss e e e sesssassnsseeesesssasssnsseesessssnnssenesesssesnssses 10|
T SR 1o S (o (= PP 10
ACK DAta MANAGEMENE ...ttt et et e et e eseeeteesbeesbeebeesseensesssesnsesseesseenseenseenseessesrenss 11
Hack Cache [T T =01 12
Byt AN0 VVOTT OPEIALIONS. ... eiiueiiieiiiieii i e is it s it esstesssesssssessssessssessasesssesssesssessassssssessasesessessssessssesssssss 12
F10atiN0-POINE VAN ...t e eae s s seaeessaseessseessseessessssreeassnsesesesesessesssress 14

D EDUGING FEAIUINESviieiieeieteeete ettt e st e bt eteesseeaseessesssebeesseesseenseenssenssesseessenseenseensesnsesseessns 14
ON-ChiD RESOUICTES ... ettt ettt e st es et e e seesteeseeseeseeeenseseeesesseeseeseessensessessessesneeseensensees 14

NI S A= e U —— 153
BEACKS AN STACK CACNES............ooooooooooooosoooooooeosooeoeeesoeeeesoeeeeroeeerseeeerseeeereeeeereeeeereeeeereeeeeseeeeseeeereeeeeneeeeereeeersen 15
[ACK-PAGE EXCEPLIONS.ccvvieiieeieeieeieeeetie e ettt e e steeeseesteesseseeeassseeesasssesssasssesssasseesasssesesassesessssesessssereesnes 16
S LT T= = o) o PP 16
Sack (DL 17|
ACK FIUSH QNA RESIOTE.........eiiiiiie ettt et et e eeeeseeeneeeseesseenseenseensesnnessnas 17
EXCEDTIONS AN TTADDING ...ttt eteeeetesessesesessssesesessssesessesessesensessssessssesssesssessssesssessasessssessnsesenress 18
F10ating-POiNt M ath SUDDOIT ...ttt e e ettt e e ettt s s sseeesasnsesesssseesssssseessssesesssnssesssereeas 20|
Eata R e 20
ALUS ANA CONLIOI BITS......cvieivieieecieeeieee et eee e te et e eee et e eteaeteaeteeteesteeseensesneesneeaneeseaneesneesseesseenseens 20

(GRS EXIENSION BITS......iiiiitiiiiiieie ettt e e et e e e sseesreeeseeseenseesseeseesseenreenseensesseessns 21
ROUNTING. ...ttt ettt e ettt e e e ettt e e et e s sesteeasasteeesasnsesessnsesasanstesssanneesssaneeesasssssssansesesssesesssssesesanes 21
KOOI ONS...... ettt ettt e e et e e etteeeteeestteeeseeesueeenseeaabeeenseeesbeeansesasseeanseeanseeenseeenseeenseseseeensesesseeenreean 22
Hardware DEDUGGING SUDPONM..........vveveveteeeeeeeeeeeeeeeeeeeeteteeeeeeeeseseseseseseseseseseseesesesenessnsseseseseasnssesssssssesesesesesess 22
'E%reakpoi LTy 23

ST S 23
RETIUSEET MNOUB........cceeeieiiteiie e eeee e ettt e eett e e ettt eeessteeeeastesassaseeasanseessaansesesansesasansessssnnsssesanseesssnsessssannessssnrereen 24
IVIPU RESELveeiieie ettt ettt e e e e e ettt eeeeeesatbeeeeeaaeaaansseeeeaasaesannseeeeeaaasaansnsseeeaaassannsreeesaaseasnnnres 26
L= 8 T 0] KPP 26
SR oYU 26
BT OULDULSooooooowoooemeeeersreeereeeereeeeereeeeeseeeeeseeerseeeerseeeerseeeeseeeeeseeeesseeerseeeereeeeseeeerseeeeeeeerseeeerseeeeseeeeseeersre 22]
ST UCETON PrETEICN oo 27
POSEOU- WV I .ottt e st i e s s et s eansen e e s e ennesrseinserseans 27
O 1= i D RSO GBS ..ottt ittt ittt sttt eeteeeeteeeeseseesesessesessseeasesesss e seses s sessssasesesessasessassssabessasessanessasessaneseanassaneses 27

PTSC IGNITE™ |P Reference Manual

INSETUCHION REFEIEINCE ... 27
ANS Forth \WWord Equival EITIES ..ttt ettt et et et e bt eheeneene et e beereereereeneeneeaeenresreas 28
Java Byte COOE EQUIVAIENTSoiiuiiiiiiiiieiieiect et esteeeetee et eeeteseteeessesesesesessssessssessssessssessssesessesessssessess 28
OO L.ttt e et b e e ete e e hr e e bt e e hr e e be s e hre e beseshre e neeehreenbe s e ree e re s e reseresereeenresan 29
Lo T 29
UOIOIC ..ottt e et et e eheeetssetesenesenesenesennseaneseneseansseas s eaneseans s e nesesssearss s 29
BOOEXD. ..ottt ettt et ee et e et e e e bee e bt e eabe e e bee e ne s e beseabeseaseseaneseneseabesearseeanesesssennesereeeresas 30
BINI0 L.ttt ettt ee e te e et e e hee e hre e be e e hreeabe s e hre e beeehre e neeeneeearesenreeenre s e res e resereeeresan 30
oKD .ttt ettt ettt ettt e et teeetteeaareeabeteahreaeheeeahreeebreeanreeenreeanreenbeeenbeeenreeebeeenreseareeareean 31

[=Te A =T T T T T T T T~ 33
LI 34
oI I ittt ettt ettt e e e e ee s —b———reeeeesaabb——ereeeeeiaanbeteeeeeeeiannbe st e e e e e nnnbete et eeeaaanbbeteeeseeesannbtereseeesesnnnren 34
£10]0)Y, o T S T O T PP TS TP PO P PP P PP OPPROP 34
T ..o oooooooeeemeeeeemmeeeeemmeeeeeeneeceenneeeeeneeeeenseeeerneeeeeeneeeeenneeeeeneeeeeeneeeeereeeeeeneeeeeerreeeceeneeeeeereeeecerseeeeeereeeee 35|
L EC . ..ottt e et e eeeteeetee e he e e be e e neeeabeeeaneeeabeseaneseabeseabesexbeeeanesenseeeabsseareeeanesenssenseearreerres 35
O 10T T, .. ettt ettt ettt e e et e e te e e bt e eabe e e beeeabe s e beeeabe s e breeane e e neeeare s e reeenresereeenresereeeareean 35

(01011 4 T T T S P T TP P PO P PPPRPR 36
T 36
Ll VU Lottt e et e e ette e teeeehb e e neeehaeeabeeeneeeaneseaneseabeseasseeaneseanesearsseaseeeane s e nnsenesearseerres 36
Dl .ottt et e et e et eeateeh e b e ehe e hs et s eREseRs s eRe e Rs e R b e eaE s eRE s eh b e R g e REeRE e R e eREseRE s eREeeRseaRsen b s enreenreensesnresrres 37
S A PP PPPPRI 37|
EXDOIT v ovvvvoeeereeeeeeeeeseeerseeeereeeeneeeesseeeeseeeerseeeenseeeereeeeseeerseeeereeeerereeseeeeseeerseeeereeeereeeeseeeereeeeeeeersreeeres 32]
S T T 37
ST T 38

T AINIE. ..ottt ettt et e ettt e et e e teeeetee e beeeaueeebeeeeheeanbeeeahee e beeeahreenbeeehreaneeebeeeneeeanreennreesnreeanreeran 39

YT T T T 40
LR TO 40
CACNIE. ...t e ettt ettt e et b e oottt estteeeueeeetbeeehe e et s e e neeetrseanne et seeans et s e eaneseinseeaResenes e nsseehse e neeeshseeenseesnreeenreesas 40
[« T 41
(o o T T 42
BTN .ot s et e e s easeere e b e e e earsehrsshneersere e s s easssasssnnsenssarserseas 42|
T B, .ottt ettt ettt e et e ettt et b eete e e tbeeaheeetaeeneseats s e nseeate s e neeeabeseneesensseenseesnbseenreesaresenreeentes 43
T 00D .ottt ettt e et e e ettt e e e e e eeab——eeaabtereeanreeeesabereeeanbeseeanneesesnbeeesanbteeseanreeessnberesanrtesesanes 43
PTIUITS ...ttt et e et e et e e ettt eeteeebee e beeenbeeanbeeenbeeanteeenreeanteeenreeenbeeenbesereeeneseanreerrean 44
LV 45]
LV T 45
L PP PPPPTRIR 45
110=0 TP PP PPPPPRI 45
18] ST PP PP 46
YOI ITI ...ttt e et e et e eteeesteeeaseeeaseeeaseeeabeeeaseeea s e e easesen b e e easeseabeeeaseeenEeeenrsseabeeeanesennseneeearreerres 46
11000 PP PPPPTRPRt 47
1100 o PP PPPPPRI 47
Ol ettt ee et e e et—eeeetteeeeateeeeate—eeatteeeanteeeanteeaeanteeeeanteteanteeaeanteeeeanreeeanteeeeansteeeeanneeeeanreaeeanteeananns 48

10 P PP PPPPIR 48

LU= TP PP PPPRPN 50
1= 0L T T P PP PPPPPn 53
ST 53
ST 53

IGNITE™ |P Reference Manual PTSC

1 PSPPI 54

OV oo o eeeeeeeeiiteeeeiiseeeeiseseesisseseeissesesessssseiieseseeisssessiissesiisssseeisssessiissesisiaseseeiasteteiasns 54

ST TP 55
SO YT 55
SOIEDUN......ovoweeeeerseeeereeceeseeeenseeenseceenseeernreeenseeenseeeenseceeneceenecereeeereceeneeeeneeerneeereeceneecenseeeeneecerseecerseeeerreeeres 55|

S O TR T R OT TP 55
KWV e ee ettt eeeee sttt eeeeeesee e e e e e e s e nan b e e e eeee e annn s e e e ee e annnseeeseennnEnEeeeee et nnnnreeeseee e nnnreeeseseeaannnrrneseseeennnnres 56
ST 56
ST 57
ST —— 58

ST 59
0T ...ttt ettt e et e et e easeehe e be et e eareen s e essebsesbeeabeenbeeReesReseReeenseebsenreenbeenbeenresnresnrs 60|
ST 61

S0 PP PP PP 62

S0 T T T O T O T T OO PP PP PPPPTTRRPPRt 62

BUD. ...ttt e ettt et e et e eteeeateeenbeeeabeeenneeanteeenneeeRteeeReeeanteeaneeeaRteeene e anteeaneeeaRteeenresanbeeenbesereeereseareeenresen 63
ST 63
SUDIEXID ...+ttt essesessesessesessessaseseaseseasessassssaseseaseseases£aseeease s oot e s eaeE s £ad e s Sas e S Sa s e e eaE e e LA £ s eREE S eaE e e SaEE s eRE s e rEsearEssres et 63
(= Lo PP 64
S o PP 64

o TP OO PP PP PTPPPTPPR 64

O S PSPPIt 65|
FEEITUDE CONEIOIEN ..ttt ettt et e teseense et eseeteseeeseteneatesessssesensstesessssenessereneen 68
RESDUN GBSttt e ettt e ettt e e et e e eetteeeeateeeaeanteeeeanseeaeanneeaaennteeaaanseeaeanseeaeansteeeanreeeeanteeaaanteeeeannreeearreeann 63
ST Lo T 68
NEEITUDE REGUESE SEIVICING. ... ovoooowoooemeooeemooeeemeoeeeeeeereeeeereeeeereeeesseeeerseeeereeeeereeeeereeeeereeeesseeeerseeeereeeeereeeerreeeerns 63
RECOONI ZING INEEITUDES. ..o uveiitiiite ettt e et e it eeetteesubeeesseessseeesseesaseeesseesasseasssesaseesssesnseenssssssssenssssssssessssessssesssees 68|
SR PIOCESSINGccicueeieiitiieeeeetiieietteeestteeeeeutessseseeesssssesssassesessasesesssssesssassssesssesesasssssssassssesssesesasssssesmssessssseresn 69
| ST ST T 70
R OO GBS, ... utttiiii i i i ittt eee e oo ettt eeeeeeesesutbeeeeeeseessunteeeeeeseeeunnbneeeeeeeesnnneeseese e saannnseeeseseiannsteseseeeeaannrrreseeeeesannres 70
00U IA = o) 1T oo TP 70
[0S0 L 7= o = PP 71
GENEI Al -PUIMPOSE BITS ... ettt e e en et e e eeese e eesseeseeseesseseeeneeneeneeneeseesseses 71
Bt OULPULS ...ttt eee et eeeetsteneseteseesssensesesessesssensasesenssssseseseseseasssensnsesensssssensaseseneaes 73
| RN N 73
[ON-ChiD RESOUI CE REGISLEN S...c.eeeeeeeeeeeeeeeeeeeeeseeeresereeeneeseeeeseseceeeeeseeesneeensseseenesesnensseenesesnenssesnenssesnenseeenenecn 73
20 [P PP TP PP PPPTPPPR 73]
US LB TACE ...ttt et e ettt e et e e eteeeetteeeaeeesbaeeaseeebeeenseeesbeaanseeenseeenseeansaeanseeensenansesessaennseeas 78
POSIE0 WVEITESottt ettt ettt e steeeseeesseeeseeessseessesesseeanesesseseasssesseesanesessesensssessseensses 78
IVIEIMOTY FQUIT ...ttt et e sttt e e e ettt e e ettt e s saseeasastesesaneeesssnbeeesanssesssanseeessnsesesssssesesaes 80
T T T e AL e W 80|

PTSC IGNITE™ |P Reference Manual

Figures

Figure 1 CPU BIOCK DIAOIGIMoeieiiiic et es e e et e seessesseeseeseesseseessesesseesseseessessessessessessessesssessessens 2
FIOUIE 2 CPU REGISIEIS.....eecuvieieieeeieeeeete e seeeet st eeteeesaeeeesessssessasessssessssessssesssessnsessnseesnsessnsessssessnsessnsessnsessnsessnseen 3
T S e s A 4
IJ_F_igure N X e e e 5
Figure 5 Add EXECULION EXAMPDIEveiiiiiieii it eae s seeeeseessaeessseessaseessesssssseasssessseessesessesansessssessnsessssessnsesss 6
[FiQUIr@ 6 CPU INSIIUCH ON FONMBL............coceceeieceeeeeeeeeeeeesesesseseeserenenesesessesesesesesecnsssassssssssssssssnsnesensnsssnsnsssssssesssssnsns 9
Figure 7 Stack EXCEptioN REgION. ... 15
igure 8 Floati NG-POINE NUMDET FOMMBES ..ottt eseenesbeseeneereseeneas 20 |
igure 9 ﬁegister e 25
Figure 10 Bit INPUE BIOCK DIBOIAIM.cviiiiitiect ettt et e et e esteeseesbeebeebesaseenseenseenseeseenseesseens 70
Figure 11 Bit INpUt REgISIEr .. 73 |
Eigure 12 Interrupt PENGING ROGISEEYoveuiieieee ittt ettt se e e b et eneeseseeneeneseeeenes 74
Figure 13 Interrupt Under Service REgISI ..o 74
FiQUIre 14 Bit OUEDUL REOISETeiuviiieiiiiiieiiti et eeteeeseeetesesseeesbesessesessesessessssessssessssessseesssnssnsessnsessnsessnsesenneesnses 75
Figure 15 INterrupt ENADI@ REGISIENocviiiiciicececeeeece ettt e b e ereseesneesseensesnseeneeeseesseereens 75 |
Eigure 16 MemOry Fault AdAreSS REGISIEYc.viiiiieieeeeeeee et e e e eneeseese e eeseesressesseeseeneeneeses 76
Figure 17 Memory Fault Data RegISter .. oo 76
Figure 18 MiSCEl |aNEOUS C REGISENocuuiiiiiitiiiieiiitieieie it iesteeeaeesseeessesesseseasesessesessessssesssssessesssessnsessnsessnneesses 77

Vi

IGNITE™ |P Reference Manual PTSC

[ITable 1 Instruction BandWidth COMDEAI iSONc.veveeeeeeeeeeeveeeeeeeeeeererereererreeserereeseseseeseseenesesnceesesneneseenceesesnenencs 3
I A T T AT e s = A 8
TADIE 3 AL U I NS UCHIONS.eiuiiitiiiitiiitei ettt it e ettt e steeeeteesseeessessasseesseessseeassseasssessssessesennesesasesesessessnsesss 8
Table 4 Co0E EXAMPIE ROLALEiiviiiiiiectiecteeteee ettt et et e e et e eteesteesreeseenseensesseeeseenseenseenseessesseerens 9
ADIE5 CPU BranCh RANGES........c.cocuieeeeeeeeeeeeeeeee ettt teeeeeteeeteeateeneeeneaeteenteenteesseesesnsesneesseesseensenns 9
[: able 6 Branch, L oop and §<ip FNSEFUCETONS. ..ttt ettt et et et e ebe st eneeresreneereas 9
Table 7 Literal INStrUCIONS. .o 10
[Table 8 Data M OvVemMENt TSI UCTONS .o 10
Table 9 L oad and StOre I NS UCHIONS.oiiiiitiiiieiieece ettt e steeeteeesseeeaseesseessseessseessssesssesenseessesssesenneesares 10
Table 10 Code Example: Complex AddresSing MOOE...........ccuveiuiiuiiiiiieitiecieeecee ettt ereereeereereens 11
Table 11 Code Example: Memory Moveand Fill......o s 11 |
Table 12 Stack Data M anagement INSEFUCETIONocuuiiiiiii e eeeesseeesseeesseesseessssessssesssneessres 11
Table 13 Stack Cache M anagement INSIFUCHTION.ccuveiuieeeeeciee ettt et eeeteeenbeeereeenbeeeneeenrs 12
Table 14 Byte and WOrd OPEration INSITUCKIONS.........ooooooreeeroeeecersereeereeeeeereeeceereeeeereeeceeseeeeerseeeeeeeeeceeeeecee 12
Table 15 COUE EXAMPIE: BYLE SLOT €.ttt eeeeseteesesaeessssnseeasssesscassessssasesesssnseresan 13
Table 16 Code Example: Null-Terminated String MOVE........oovoviiiiiieeeee e 13
Table 17 Code Example: Null Character SEArCHcc.ooiiiiiiiiiiiceiceeee et esseeebeeeseesareeeneesares 13
Table 18 Code EXamPle: BYLE SEAICHcviiiiiieiccececc ettt esbeesbeesbeeereesesseeeneeersesseereens 14
Table 19 Floating Point Math INSIrUCKION ..o 14 |
Table 20 MiSCElaN@OUS I NSEFUCLIONSoiviiitiiiiiiiie ettt et e et eaeeeseesseesseessesssessaeseessesasesssesnssensesssesseesseens 14
Table 21 DEDUGQING INSEFUCLIONoiitieiiceeecees ettt e e e eseesreesreesreeseenseenseeneeeneesseesseens 14
Table 22 ON-Chip RESOUI CES INSEFUCTION ...ttt ettt ebeseeseebesbeseesesreseeneas 14
Table 23 Code Example: SLACK I NITTAITIZALIONccueeiieeeiiiieieeeeiee et eeete e e eeteeeseaeeessssreeseeseesssnsenesssnseeesan 16
Table 24 Code EXample: StACK DEPTN ..ot ese e eeeseenees 17
Table 25 Code Example: Save COoNteXt ... 17 |
Table 26 Code EXample: RESLOr @ CONTEXLviieiieiiiiiiiiieieei e eetesesiesebesessesesressseesssessseesssesssesssessnsessres 18
Table 27 Traps DeERENdent 0N SYSLEM SEALE.........c..eecuieiueeeeeeietieeeteeeeteeeeteeeteeeeteeetveesteeeseeessreesseeesseeesseeessreesseens 19
TADIE 28 T AD PriOr i IS uiiiiiit i iitii i i i e it e it e it iesaesessssssssssesessssesesssessessasessssssassssaseesasessasessasessanessabessnneesses 19
Table 29 Traps | NAdePENdEnt OFf SYSLEM SEALEcc.ueiiieeeieieeieieeiee et eeeeee e et e e eeateesssseeeasssseessasseessssseeessssseresan 20
Table 30 GRS Extension Bit Manipulation INSIrUCHIONSovoviiiieeicciceeee e 20
Table 31 ROUNAING M OUE ACHIONccviiiiiiiieiiicie ettt ettt e e te et e e e et e teenteesaasteenteenseeseesseensesneesseasseensenns 21
Table 32 Code Example: Floating-Point MUItiply ..o 22
Table 33 Code example: Memory Fault SErVICE ROULINEG.........c.uccveeeceeeeeeeeeeee e seee e 23
Table 34 Instructionsthat Hold-0Off Pre-fetCh ..o 27
Table 35 CPU M nemonics and Opcodes (MNEmMONIC OFAEN)cuvecueeiueeeeiieciieeeeecieeeteeeeeeeeeeeteeeeteeenveeeveeneas 66
Table 36 CPU M nemonics and Opcodes (OPCOde OFder)ouiiuiiuiiiiiiiiiiieceeeee e enneaas 67
Table 37 Code EXAMPIE: ISRV ECIOISuuuiiiieiiiieeii ettt e e ettt e e eetteesesaeesssanseeassnseresassessssasesesssnseresan 69
Table 38 Code Example: Bit Input Without Zer0-PerSISLENCE.coviiveeieeieeeee e 71
Table 39 COde EXAMPIE. CPU USAGE OF BIT TNPULS....oooooooooorosoooomsosmsoseosmessserssoesoseesseesoseessoeerooeesssesoeersoeees 71 |
Table 40 Resource REGISLEr RESEL VAIUESccviiiiiiiieeeeeeeecee et este et e e eneeneesneeeneeeseesseenreens 77
[Table 41 SIONAI DESCT I ONS. ..eeteee ettt ettt ettt e e et e eeeesteeeteenseeneeeseaseenseenseenseeseesneesseesseesseenseenes 78
Table 42CPU Read Timing Par@mMeELErS.........ocuiiiiiiiiiiiicceceeee ettt e e eneeeesaeeeseeessesseaseeas 81
Table 43 CPU Write TIMING Par QMELEI S......c..ueeeeueieieeei et eeeee s eteeeeeeaeesssseeasssnsesseassessssssesesssssesesan 82
Table 44 Memory Fault Operation Timing ParameEtersS.iuiiiiiiiiei it eise i ieiineeirsesseereeas 84

Vii

PTSC IGNITE™ |P Reference Manual

viii

IGNITE™ |P Reference Manual

| Purpose

This document describes the IGNITE processor.
PTSC's IGNITE is a low-power, low-cost, stack-
architecture processor targeted specifically for embedded
applications. As a stack-architecture processor, the
IGNITE processor isideal for applications that must run
Java™ at native speeds. These include laser printers,
ignition controllers, network routers, personal digital
assistants, set-top cable controllers, video games, pagers,
cell phones, and many other applications. But since C++
issemantically similar to Java, the IGNITE processor dso
runs C and C++ efficiently, as well as stack-architecture
languages such as Forth and Postscript.

This data book provides the information required to
design products that use the IGNITE processor CPU.

Overview

The IGNITE processor is an implementation of the
ShBoom™ microprocessor architecture. In its full
implementation it is a highly integrated 32-bit RISC
processor that executes at a peak performance of one
instruction per CPU-clock cycle. The CPU is designed
specifically for use in those embedded applications for
which power consumption, CPU performance, and system
cost are deciding selection factors.

The IGNITE processor CPU instruction set is hard-
wired, allowing most instructions to execute in a single
cycle, without the use of pipelines or superscalar architec-
ture. A "flow-through" design allows the next instruction
to start before the prior instruction completes, thus
increasing performance.

The IGNITE processor contains 52 general-purpose
registers, including 16 global data registers, an index
register, a count register, a 16-deep addressable
register/return stack, and an 18-deep operand stack. Both
stacks contain an index register in the top element, are
cached on chip, and, when required, automatically spill to
and refill from external memory. The stacks minimize the
datamovement typical of register-based architectures, and
also minimize memory accesses during procedure calls,
parameter passing, and variable assignments. Additionaly,
the CPU contains a mode/status register, two stack
pointers, and 7 locally addressed on-chip resource
registers for 1/O, control, configuration, and status.

PTSC

Run Java at Native Speed: The stack architectures
of the IGNITE processor and the Java Virtual Machine
are very similar. This resultsin only arelatively simple
byte code trandator (20K) being required to produce
executable native code from Java byte code, rather than a
full Just-in-Time (JT) compiler (200-400K) as is
required for common processor architectures. Theresultis
much faster initial execution of Java programs and
significantly smaller memory requirements. Additionally,
hundreds of kilobytes of memory are saved due to the
reduced size of the trandator itself.

Multiple Language Support: Most modern
languages areimplemented on astack model. Thefeatures
that allow the IGNITE processor to run Java efficiently
apply similarly to other languages such as C, C++, Forth
and Postscript.

Zero-Operand Ar chitecture: Many RISC architec-
tures waste valuable instruction space—often 15 bits or
more per instruction—by specifying three possible
operands for every instruction. Zero-operand (stack)
architectures eliminate these operand bits, thus allowing
much shorter instructions—typically one-fourth the size—
and thus a higher instruction-execution bandwidth and
smaller program size. Stacks also minimizeregister saves
and loads within and across procedures, thus alowing
shorter instruction sequences and faster-running code.

Fast, Simple Instructions. Instructions are less
complex to decode and execute than those of conventional
RISC processors, allowing the IGNITE processor to issue
and completeinstructionsin asingle CPU-clock cycle, as
often as every CPU-clock cycle.

Four-Instruction Buffer: Using 8-bit opcodes, the
CPU obtains up to four instructions from memory each
time an instruction fetch or pre-fetch is performed. These
instructions can be repeated without rereading them from
memory. This maintains high performance when
connected directly to DRAM, without the expense of a
cache.

Local and Global Registers: Local and global
registers minimize the number of accesses to data
memory. Thelocal-register stack automatically cachesup
to sixteen registers, and the operand stack up to eighteen
registers. As stacks, any allocated data space efficiently
nests and unnests across procedure cals. The sixteen
global registers provide storage for shared data.

Posted Write: Decouples the processor from data
writes to memory, alowing the processor to continue
executing after awrite is posted.

IGNITE™ |P Reference Manual

PTSC

Fully Satic Design: A fully static design alows
running the clock from DC up to rated speed. Lower clock
speeds can be used to drastically cut power consumption.

Hardware Debugging Support: Both breakpoint
and single-step capability aid in debugging programs.

Floating-Point Support: Specia instructionsimple-

point arithmetic.

Interrupt Controller: Supports up to eight
prioritized levels with interrupt responses as fast as eight
CPU-clock cycles.

Eight Bit Inputs and Eight Bit Outputs: 1/0 bits
are available for CPU application use, thus reducing the

ment efficient single- and double-precison IEEE floating- requirement for externa logic.
A » Address Bus
» Data Bus
prefetch
next pc +4
instruction
2 latch
S
A 2 & |3 b 2
g |8 15
28 g decode/ y» Control
s T o execute %
g o
§ ©
X o
b
g
r3 2
5 < _
28 . On-Chip
ri Resource
Registers
Rry i3
ro +4/-4
<— oout
0le
mfltaddr
mfftdata
32 miscc
3 address
, data
9' X | +4]-4 32
« g15
%l sa | +4]-4
| dept h +1/-1 g2 —
trap logic
gl piog INTC
) | 'a I(L4F4 go | force |— »| reti
call —] int ack
op int req
control/status 3 int #
mde [global int
enable

Figure 1 CPU Block Diagram

IGNITE™ |P Reference Manual

| Microprocessor Unit

The CPU supports the ShBoom architectural
philosophy of simplification and efficiency of usethrough
its basic design in severa interrelated ways.

Whereas most RISC processors use pipelines and
superscalar execution to execute at high clock rates, the
IGNITE processor uses neither. By having asimpler arc-
hitecture, the IGNITE processor issues and completes
most instructions in a single clock cycle. There are no
pipelines to fill and none to flush during changes in
program flow. Though more instructions are sometimes
required to perform the same procedure in the IGNITE
processor, the CPU operates at a higher clock frequency
than other processors of similar silicon size and
technology, thus giving comparable performance at
significantly reduced cost.

A microprocessor's performance is often limited by
how quickly it can be fed instructions from memory. The
CPU reducesthis bottleneck by using 8-bit instructionsso
that up to four instructions (an instruction group) can be
obtained during each memory access. Each instruction
typically takes one CPU-clock cycle to execute, thus
requiring four CPU-clock cyclesto executetheinstruction
group. Because amemory access can completein four (or
even fewer) CPU-clock cycles, the next instruction group
can be available when execution of the previous group
completes. This makes it possible to feed instructions to
the processor a maximum instruction-execution

PTSC

IGNITE processor CPU instruction sequence that
demonstrates twice the typical RISC CPU instruction
bandwidth. The instruction sequence on the IGNITE
processor requires one-half the instruction bits, and the
uncached performance benefitsfromtheresulting increase
in instruction bandwidth.

95 =91 - (g2 + 1) + 93 - (g4 * 2)
Typi cal RI SC MPU | GNI TE CPU
push g1
push g2
add #1, 92,95 inc #1
sub g1, g5, g5 sub
push g3
add g5, 93,95 add
push g4
shl g4, #1,tenp shl #1
sub
sub g5, tenp, g5 pop g5
20 bytes 10 bytes
Exanpl e of twice the instruction
bandwi dt h avail able on the I GNI TE CPU

Table 1 Instruction Bandwidth Comparison

bandwidth without the cost and
complexity of an instruction

All registers are 32 bits wide.

sl7

cache. s16

gl5 ris .

gl4 ri4 .

The zero-operand (stack) : : :

architecture makes 8-hit : : | | sa
instructions possible. The stack . .
architecture eliminates the : o L——d1a
requirement to specify source j j |] node
and destination operands in : 3
every instruction. By not using o1 il 2 —J.«
opcode bitson every instruction 90 ro s0 |] x

for operand specification, a
much greater bandwidth of
functional operations—up to
four times as high—is possible.

Global
Registers

[Addressable

Local-Register

Miscellaneous
Registers

Operand Stack
Stack

[0 unaddressable (used by cache logic)

Table 1 depicts an example Figure2 CPU Registers

3

IGNITE™ |P Reference Manual

PTSC

FFFFFFFF
I/O Devices
NN
Boot Program
80000008 CPU Hardware Reset
80000000 Boot Signature
W
1l4c OS Underflow
148 OS Overflow
144 LRS Underflow
140 LRS Overflow
13c Memory Fault
138 Single Step
134 Breakpoint
130 FP Round
12c FP Normalize
128 FP Overflow
124 FP Underflow
120 FP Exponent
1lc Interrupt 7
118 Interrupt 6
114 Interrupt 5
110 Interrupt 4
10c Interrupt 3
108 Interrupt 2
104 Interrupt 1
100 Interrupt O
W
0

Figure 3 CPU Memory Map

Stack CPUs are thus simpler than register-based
CPUs, and the IGNITE CPU has two hardware stacks to
take advantage of this: the operand stack and the local-
register stack. The simplicity is widespread and is
reflected in the efficient ways stacks are used during
execution.

TheALU processesdatafrom primarily one source of
inputs—the top of the operand stack. The ALU is also
used for branch address calcul ations. Data bussing isthus
greatly reduced and simplified. Intermediate results
typically “stack up” to unlimited depth and are used
directly when needed, rather than requiring specific
register alocations and management. The stacks are
individually cached and spill and refill automatically,

eliminating software overhead for stack manipulation
typical in other RISC processors. Function parametersare
passed on, and consumed directly off of, the operand
stack, eliminating the need for most stack frame
management. When additional local storage is required,
the local-register stack supplies registers that efficiently
nest and unnest across functions. As stacks, the stack
register spaces are only allocated for dataactually stored,
maximizing storage utilization and bus bandwidth when
registersare spilled or refilled—unlikearchitecturesusing
fixed-size register windows. Stacks speed context
switches, such asinterrupt servicing, becauseregistersdo
not need to be explicitly saved before use—additional
stack space is allocated as required. The stacks thus
reduce the number of explicitly addressable registers
otherwise required, and speed execution by reducing data
location specification and movement. Stack storage is
inherently local, so the global registers supply non-local
register resources when required.

Eight-bit opcodes are too small to contain much
associated data. Additional bytes are necessary for
immediate values and branch offsets. However, variable-
length instructions usually complicate decoding and
complicate and lengthen the associ ated data access paths.
To simplify the problem, byte literal data is taken only
from the rightmost byte of the instruction group,
regardless of thelocation of the byteliteral opcode within
the group. Similarly, branch offsetsaretaken asall bitsto
the right of the branch opcode, regardless of the opcode
position. For 32-bit literal data, the data is taken from a
subsequent memory cell. These design choicesensurethat
therequired datais always right-justified for placement on
the internal data busses, reducing interconnections and
simplifying and speeding execution.

Since most instructions decode and execute in a
single clock cycle, the same ALU that is used for data
operations is also available, and is used, for branch
address calculations. Thiseliminatesan entire ALU often
required for branch offset calculations.

Rather than consume the chip areafor asingle-cycle
multiply-accumulate unit, the higher clock speed of the
CPU reduces the execution time of conventional multi-
cycle multiply and divide instructions. For efficiently
multiplying by constants, a fast multiply instruction
multiplies only by the specified number of bits.

IGNITE™ |P Reference Manual

Rather than consumethe chip areafor abarrel shifter,
the counted bit-shift operation is “smart” to first shift by
bytes, and then by bits, to minimize the cycles required.
The shift operations can also shift double cells (64 bits),
allowing bit-rotate instructions to be easily synthesized.

Although floating-point math is useful, and
sometimes required, it is not heavily used in embedded
applications. Rather than consume the chip area for a
floating-point unit, CPU instructionsto efficiently perform
the most time-consuming aspects of basic | EEE floating-
point math operations, in both single and double
precision, are supplied. The operations use the “smart”
shifter to reduce the cycles required.

Byte read and write operations are available, but
cycling through individual bytes is slow when scanning
for byte values. These types of operations are made more
efficient by instructions that operate on all of the bytes
within acell at once.

Address Space

The CPU fully supportsalinear four-gigabyte address
space for al program and data operations.

Big Endian Byte Order
31 24 23 1615 87 0 Bit

celldata

‘ byte data

0 1 2 3 Byte

Figure 4 Byte Order

Several instructions or operations expect addresses
aigned on four-byte (cell) boundaries. These addresses
are referred to as cell-aligned. Only the upper 30 bits of
the address are used to locate the data; the two least-
significant address bits are ignored but appear externally.
Withinacell, the high order byteislocated at thelow byte
address. The next lower-order byte is at the next higher
address, and so on. For example, the value 0x12345678
would exist at byte addressesin memory, fromlow to high
address, as 12 34 56 78. See Figure 4.

PTSC

Registersand Stacks

Theregister set contains 52 general-purposeregisters,
amode/status register, and two stack pointers. See Figure
2. It aso contains 7 local address-mapped on-chip
resource registers used for 1/0, configuration, and status.

The operand stack contains eighteen registers and
operates as a push-down stack, with direct access to the
top three registers (s0-s2). These registers and the
remaining registers (s3-s17) operate together as a stack
cache. Arithmetic, logical, and data-movement
operations, as well asintermediate result processing, are
performed on the operand stack. Parameters are passed
to procedures and results are returned from procedures
on the stack, without the requirement of building a stack
frame or necessarily moving data between other
registers and the frame. As atrue stack, registers are
allocated only as required, resulting in efficient use of
available storage. The external operand stack is
addressed by register sa.

The local-register stack contains sixteen registers
and operates as a push-down stack with direct accessto
the first fifteen registers (r0—+14). Thesesregisters and
the remaining register (r15) operate together as a stack
cache. As a stack, they are used to hold subroutine
return addresses and automatically nest local-register
data. The external local-register stack is addressed by
register la

Both cached stacks automatically spill to memory
and refill from memory, and can be arbitrarily deep.
Additionally, sO and rO can be used for memory access.
See Sacks and Sack Caches.

The use of stack-cached operand and local registers
improve performance by eliminating the overhead
required to save and restore context (when compared to
processors with only global registers available). This
allows for very efficient interrupt and subroutine
processing.

In addition to the stacks are sixteen global registers
and three other registers. The global registers (g0—g15)
are used for data storage, and as operand storage for the
CPU multiply and divide instructions (g0). Remaining
are mode, which contains mode and status bits; x, which
isan index register (in addition to sO and r0); and ct,
which isaloop counter and also participates in floating-
point operations.

IGNITE™ |P Reference Manual

PTSC

Programming M ode

For those familiar with the Java Virtual Machine,
American National Standard Forth (ANS Forth),
Postscript, or Hewlett-Packard cal culators that use
postfix notation, commonly known as Reverse Polish
Notation (RPN), programming the IGNITE CPU will
in many ways be very familiar.

A CPU architecture can be classified asto the
number of operands specified within itsinstruction
format. Typical 16-bit and 32-bit CISC and RISC CPUs
are usually two- or three-operand architectures, whereas
smaller microcontrollers are often one-operand
architectures. In each instruction, two- and three-
operand architectures specify a source and destination,
or two sources and a destination, whereas one-operand
architectures specify only one source and have an
implicit destination, typically the accumulator.
Architectures are also usually not pure. For example,
one-operand architectures often have two-operand
instructions to specify both a source and destination for
data movement between registers.

The IGNITE CPU is a zero-operand architecture,
known as a stack computer. Operand sources and
destinations are assumed to be on the top of the operand
stack, which is also the accumulator. An operation such
as add uses both source operands from the top of the
operand stack, adds them, and returns the result to the
top of the operand stack, thus causing a net reduction of
one in the operand stack depth. See Figure 5.

Most ALU operations behave similarly, using two
source operands and returning one result operand to the
operand stack. A few ALU operations use one source
operand and return one result operand to the operand
stack. SomeALU and other operations also require anon-
stack register, and avery few do not use the operand stack
at all.

Non-ALU operationsarea so similar. Loads (memory
reads) either use an address on the operand stack or in a
specified register, and place the retrieved data on the
operand stack. Stores (memory writes) use either an
address on the operand stack or in aregister, and use data
from the operand stack. Data movement operations push
data from a register onto the operand stack, or pop data
from the stack into a register.

f s5 s5
e s4 f s4
d s3 € s3
c s2 | add d s2
b s1 c s1
a s0 a+t s0O

Operand Stack

Figure 5 Add Execution Example

Once data is on the operand stack it can be used for
any instruction that expects data there. The result of an
add, for instance, can be left on the stack indefinitely,
until used by a subsequent instruction. See Table 1.
Instructions are also available to reorder the data in the
top few cells of the operand stack so that prior results can
be accessed when required. Data can also be removed
from the operand stack and placed in local or global
registersto minimize or eliminate later reordering of stack
elements. Data can even be popped from the operand
stack and restacked by pushing it onto the local-register
stack.

Computations are usually most efficiently performed
by executing the most deeply nested computations first,
leaving the intermediate results on the operand stack, and
then combining the intermediate results as the
computation unnests. If the nesting of the computation is
complex, or if theintermediate results are to be used some
time later after other data would have been added to the
operand stack, the intermediate results can be removed
from the operand stack and stored in globa or loca
registers.

IGNITE™ |P Reference Manual

Global registers are used directly and maintain their
data indefinitely. Local registers are registers within the
local-register stack cache and, as a stack, must first be
allocated. Allocation can be performed by popping data
from the operand stack and pushing it onto the local-
register stack one cell at atime. It can aso be preformed
by allocating ablock of uninitialized stack registersat one
time; the uninitialized registers are then initialized by
popping data, one cell at atime, into the registersin any
order. The allocated local registers can be deallocated by
pushing data onto the operand stack by popping it off of
the local register stack one cell at a time, and then
discarding from the operand stack the data that is not
required. Alternatively, the allocated | ocal registerscan be
deallocated by first saving any data required from the
registers, and then deall ocating ablock of registersat one
time. The method selected depends on the number of
registers required and whether the data on the operand
stack isinthe required order.

Registerson both stacks arereferenced relativeto the
tops of the stacks and are thus local in scope. What was
accessiblein r0, for example, after one cell has been push
onto thelocal-register stack, isaccessibleasrl; the newly
pushed value is accessible as r0.

Parameters are passed to and returned from subrou-
tines on the operand stack. An unlimited number of
parameters can be passed and returned in this manner. An
unlimited number of local-register allocations can also be
made. Parameters and allocated local registers thus
conveniently nest and unnest across subroutines and
program basic blocks.

PTSC

Subroutine return addresses are pushed onto the
local-register stack and thus appear as r0 on entry to the
subroutine, with the previous r0 accessible asrl, and so
on. As data is pushed onto the stacks and the available
register spacefills, registers are spilled to memory when
required. Similarly, as data is removed from the stacks
and the register space empties, the registers are refilled
from memory as required. Thus from the program's
perspective, the stack registers are always available.

Instruction Set Overview

Table 2 liststhe CPU instructions; Table 35, page 66,
and Table 36, page 67, list the mnemonics and opcodes.
All instructions consist of eight bits, except for those that
require immediate data. This alows up to four
instructions (an instruction group) to be obtained on each
instruction fetch, thus reducing memory-bandwidth
requirements compared to typical RISC machines with
32-bitinstructions. This characteristic also allowslooping
on aninstruction group (amicro-loop) without additional
instruction fetches from memory, further increasing
efficiency. Instruction formats are depicted in Figure 6.

PTSC

IGNITE™ |P Reference Manual

ARITHMETIC/SHIFT
ADD

ADD willh carry

ADD ADDRESS
SUBTRACT

SUBTRACT with boarow
IMCREMENT
DECREMEMNT

MWEGATE

SIGN EXTEMD BYTE
COMPARE

BAACK IMLIN

MULTIPLY SIGHED
MULTIPLY LINSIGNED
FAST MULTIPLY SIGHNED
DIVIDE UMSIGHNED
SHIFT LEFT/RIGHT
DOUBLE SHIFT LEF TIRIGHT
INVERT CARRY

MISCELLANEOQUS

CACHE CONTROL

FRAME CONTROL

STACK DEPTH

NO OPERATION
ENABLE/DISABLE INTERRUPTS

CONTROL TRANSFER
BRANCH

BRANCH ON ZEROC
BRANCH INDIRECT

CALL

CALL INDIRECT
DECREMENT AND BRAMCH
SKIP

SKIP ON CONDITION
MICRO-LOOP

MICRO-LOOP ON COMDITION
RETURN

RETURN FROM INTERRUPT

FLOATING POINT
TEST EXPONENT
EXTRACT EXPOMEMNT
EXTRACT SIGNIFICAND
REPLACE EXPOMENT
DEMORMALIZE
MORMALIZE RIGHTI/LEFT
EXPOMENT DIFFERENCE
ADD EXPONENTS
SUBTRACT EXPONENTS
ROUMD

LOGICAL
ANDY

O

XOR

NOT AND
TEST BYTES
EQUAL ZERD

DEBUGGING
=TEF
BREAKPOIMT

DATA MANAGEMENT
LAy

STORE

STORE INDIRECT, pre-decipost-ing
PUSH REGISTERFSTACK
POP REGISTER/STACK
EXCHAMNGE

REVOLVE

SPLUIT

REPLACE BYTE

PUSH LITERAL

STORE ON-CHIF RESOURCE
LOAD ON-CHIP RESOURCE

Table 2 CPU Instruction Set

add add pe adda adde
and omp dec $#1 dec #4
dec ct,#1 divu eqz iand
ine #1 ine #4 mulfs muls
mulu ik} negq notc
or sexb shift shiftd
shl #1 shl &8 shr #1 shr #8
shld #1 shrd #1 sub subb
testh K0T

Table3 ALU Instructions
ALU Operations

Only oneALU statusbit, carry, ismaintained andis
stored in mode. Since there are no other ALU status
bits, al other conditional operations are performed by
testing SO on thefly. egz isused to reverse the zero/non-
zero state of s0. Most arithmetic operations modify
carry from the result produced out of bit 31 of 0. The
instruction add pc is available to perform pc-relative
data references. adda is available to perform address
arithmetic without changing carry. Other operations
modify carry as part of the result of the operation.

s0 and sl can be used together for double-cell
shifts, with sO containing the more-significant cell and
sl the less-significant cell of the 64-bit value. Both
single-cell and double-cell shiftstransfer abit between
carry and bit 31 of s0. Code depicting single-cell rotates
constructed from the double-cell shift isgivenin Table
4,

All ALU instruction opcodes are formatted as 8-bit
values with no encoded fields.

Almost all ALU operations occur on the top of the
operand stack in s0 and, if required, s1. A few operations

aso usego, ct, or pc.

IGNITE™ |P Reference Manual PTSC

br br [] bz call
; Rotate single cell left by specified numbaer of bits call [] dibr mloop mloops
(N #bats -- n2) mloopn mloopnc mloopnn mloopnz
mloopz ret reti skip
rotate_left:: skipe skipn skipnc skipnn
skipnz skipz
push #0 : Space for bits
”;EF ’ » get count Table 6 Branch, Loop and Skip Instructions
shift
or ; combine parts

: Rotate single cell nght by specihied number of bits
;N1 #bits --n2)
- Branches
rAale_ric H
olate_rig |opcode [opcode Jopcode | branch | 3-bit offset
ush #0 : space for bits
Fw i |opcode |opcode | branch |offset | 11-bit offset
e
|opcode |branch| offset | 19-bit offset
shi #1 : make a negative
notc ; sign magnitude |bl‘anCh| offset | 27-bit offset
shr #1 : number
Literals
shiftd i
push nibble
ar |opcode |opcode |push.n| 0pcode| (any positions)
lopcode [opcode [push.b]| value | push byte
Table 4 Code example: Rotate lopcode [push.b|opcode| value |
|push.b |opcode| opcode| value |
Offset Bits Offset Rangein Bytes opcode | push.| [opcode [opcode (p;rf';‘gggﬁi ons)
data for first push.|
3 -16/+12
11 -4096/+4092
19 ~1048576/+1048572 |opcode |opcode |opcode |opcode |
27 -268435456/+268435452 I
A
Note:
Encoded offset isin cells. Offset is added to the address of [opcode Jopcode [opcode Jopcode |
the beginning of the cell containing the branch to compute
the destination address.
Figure 6 CPU Instruction Format

Table5 CPU Branch Ranges

IGNITE™ |P Reference Manual

PTSC

Branches, Skips, and L oops

The instructions br, bz, call and dbr are variable-
length. The three least-significant bits in the opcode and
all of the bits in the current instruction group to the right
of the opcode are used for the relative branch offset. See
Figure 6 and Table 5. Branch destination addresses are
cell-aligned to maximize the range of the offset and the
number of instructionsthat are executed at the destination.
If an offset is not of sufficient size for the branch to reach
the destination, the branch must be moved to an
instruction group where more offset bitsareavailable, or a
register indirect branch, br [] or cal [], can be used.
Register indirect branches use an absolute byte-aligned
address from 0. The instruction add pc can be used if a
computed pc-relative branch is required.

The mloop_ instructions are referred to as micro-
loops. If specified, a condition is tested, and then ct is
decremented. If a termination condition is not met,
execution continues at the beginning of the current
instruction group. Micro-loops are used to re-execute
short instruction seguences without re-fetching the
instructions from memory. See Table 11.

Other than branching on zero with bz, conditional
branching is performed with the skip_ instructions. They
terminate execution of the current instruction group and
continue execution at the beginning of the next instruction
group. They can be combined with the br, call, dbr, and ret
(or other instructions) to create additional flow-of-control
operations.

push.b push.| push.n

Table 7 Literal Instructions

Literals

To maximize opcode bandwidth, three sizesof literals
areavailable. The datafor four-bit (nibble) literals, witha
range of -7 to +8, is encoded in the four least-significant
bits of the opcode; the numbers are encoded as two's-
complement valueswith the val ue 1000 binary decoded as
+8. The datafor eight-bit (byte) literals, witharange of 0—
255, is located in the right-most byte of the instruction
group, regardless of the position of the opcode within the
instruction group. The data for 32-bit (long, or cell)
literalsislocated in acell following theinstruction group

10

in the instruction stream. Multiple push.| instructionsin
the same instruction group access consecutive cells
immediately following the instruction group. See Figure
6.

pop ct pop qf pop ri pop ®
push ¢t push gi push rif push =i
push =

Table 8 Data M ovement Instructions

Data Movement

Register data is moved by first pushing the register
onto the operand stack, and then popping it into the
destination register. Memory datais moved similarly. See
Loads and Sores, above.

The opcodesfor the data-movement instructions that
access gi and ri are 8-bit values with the register number
encoded in the four least-significant bits. All other data-
movement instruction opcodes are formatted as 8-bit
values with no encoded fields.

1d [=-r0] ld [=--x] 1d [r0++] 1d [x0]
ld [x++] 1d [x] 1d [) ld.b []
gt [==r0] st [--x] st [r0++] st [0]
st [x++] st [x] st [] replb

Table 9 Load and Sore Instructions

Loads and Stores
rO and x support register-indirect addressing and also
register-indirect addressing with predecrement by four or
postincrement by four. These modes alow for efficient
memory reference operations. Code depicting memory
move and fill operationsis given in Table 11.

Register indirect addressing can also be performed
with the address in 0. Other addressing modes can be
implemented using adda. Table 10 depicts the code for a
complex memory reference operation.

IGNITE™ |P Reference Manual

The memory accesses depicted in the examples above
are cell-aligned, with the two least-significant bits of the
memory addresses ignored. Memory can aso be read at
byte addresses with Id.b [] and written at byte addresses
using x and replb. Similar operations are availablefor 16-
bit words. See Byte and Word Operations.

; addc [g0+g2+20),#8,[g0-g3-4]
push g0
push g2
adda
push.b #20
adda
Id 1
push.n #8
addc
push g0
push @3
neg
adda
dec #4
st Il
; The carry into and out of 2ddc is maintained.

Table 10 Code Example: Complex Addressing
Mode

The CPU contains a one-level posted write. This
allows the CPU to continue executing while the posted
writeisin progressand can significantly reduce execution
time. Memory coherency is maintained by giving the
posted write priority bus access over other CPU bus
requests, thus writes are not indefinitely deferred. In the
code examplesin Table 11, theloop execution overhead is
zero when using posted writes. Posted writes are enabled
by setting mspwe in resource register miscc.

11

PTSC

: (cell_source cell_dest cell_count --)

move_cells:

pop ct ; count

pop X ; dest

pop Istack ; source to r0
move_cell_loop:

Id [rO++]

st [x+4]

mloop move_cell_loop

push Istack

pop ; discard source
: Memory Fill
; (cell_dest cell_count cell_value --)
fill_cells::

%cqg

pop ct ; count

XCg

pop X ; dest
fill_cells_loop::

push : keep fill value

st [x++]

mloop fill_cells_loop

; discard fill value

pop

Table 11 Code Example: M emory Move and Fill
All load and store instruction opcodes are formatted
as 8-bit values with no encoded fields.

lframe
push lstack

pop lstack
sframe

push
®Cg

pPop
rey

Table 12 Stack Data M anagement I nstruction

Sack Data Management

Operand stack datais used from the top of the stack
and is generally consumed when processed. This can
require the use of instructions to duplicate, discard, or
reorder the stack data. Data can also be moved to the
local-register stack to placeit temporarily out of the way,
or to reverseits stack access order, or to placeitinalocal
register for direct access. Seethe code examplesin Table
11.

IGNITE™ |P Reference Manual

PTSC

If more than a few stack data management
instructions are required to access a given operand stack
cell, performance usually improves by placing datain a
local or global register. However, there is afinite supply
of global registers, and local registers, at some point, spill
to memory. Data should be maintained on the operand
stack only while it is efficient to do so. In generd, if the
program reguires frequent access to data in the operand
stack deeper than s2, that data, or other more accessible
data, should be placed in directly addressable registersto
simplify access.

To use the local-register stack, data can be popped
from the operand stack and pushed onto the local-register
stack, or data can be popped from the local -register stack
and pushed onto the operand stack. This mechanism is
convenient to move afew cellswhen theresulting operand
stack order is acceptable. When moving more data, or
when the data order on the operand stack isnot asdesired,
Iframe can be used to alocate or deallocate the required
local registers, and then the registers can be written and
read directly. Using Iframe also has the advantage of
making the required local -register stack space available by
spilling the stack as a continuous sequence of bustransac-
tions, which minimizes the number of RAS cycles
required when writing to DRAM. The instruction sframe
behaves similarly to Iframe, and is primarily used to
discard a number of cells from the operand stack.

All stack data management instruction opcodes are
formatted as 8-bit values with no encoded fields.

Sack Cache Management

Other than initialization, and possibly monitoring of
overflow and underflow via the related traps, the stack
caches do not require active management. Several
instructions exist to efficiently manipulate the caches for
context switching, status checking, and spill and refill
scheduling.

The _depth instructions can be used to determine the
number of cells in the SRAM part of the stack caches.
This value can be used to discard the values currently in
the cache, to | ater restore the cache depth with _cache, or
to compute the total on-chip and external stack depth.

The _cache instructions can be used to ensure either
that dataisin the cache or that space for dataexistsinthe
cache, so that spillsand refills occur at preferential times.
This alows more control over the caching process and
thus a greater degree of determinism during the program
execution process. Scheduling stack spills and refills in

thisway can also improve performance by minimizing the
RAS cycles required due to stack memory accesses.

The _frame instructions can be used to alocate a
block of uninitialized register space at the top of the
SRAM part of a stack, or to discard such a block of
register space when no longer required. They, like the
_cacheinstructions, can be used to group stack spillsand
refills to improve performance by minimizing the RAS
cycles required due to stack memory accesses.

See Sacks and Sack Caches on page 15 for more
information.

All stack cache management instruction opcodes are
formatted as 8-bit values with no encoded fields.

lcache
push la

ldepth
push sa

pop la
scache

pop sa
sdepth

Table 13 Stack Cache M anagement Instruction

ld.b []

testhb

copyb shl #8

shr #8

replh

Table 14 Byte and Word Operation I nstructions

Byte and Word Operations

Bytes can be addressed and read from memory
directly and can be addressed and written to memory with
the code depicted in Table 15. Words (16-bit values) are
handled similarly.

Instructions are available for manipulating bytes
within cells. A byte can be replicated across a cell, the
byteswithin acell can betested for zero, and acell canbe
shifted by left or right by one byte. Code examples
depicting scanning for a specified byte, scanning for anull
byte, and moving a null-terminated string in cell-sized
units are given below.

All byte operation instruction opcodes are formatted
as 8-bit values with no encoded fields.

12

IGNITE™ |P Reference Manual PTSC

; Byte store
; (byte byte_addr --) ; Move cell-aligned null-terminated string
. (cell_source cell_dest --)
byte_store::
null_move::
pop X : address
Id [x] ; get data pop X ; destination
replb ; insert byte pop Istack ;source
st [x] ; replace data
push.n #0
Table 15 Code Example: Byte Store pop ct i 8 Very lﬂng loop
null_move_loop::
Id [r0++]
: Null character search testb ; check for zero
» (cell_source --) st [X++]
mioopnc null_move_loop
null_search::
- add push Istack
pop X - address pop : discard source
push.n #0
pop ct : a very long loop

Table 16 Code Example: Null-Terminated String

| rmin when null found or after
» loop terminates when null found or afte M ove

; @ long time if not found.
null_search_loop::

Id [K++]

testb

pop

mloopnc null_search_loop

Table 17 Code Example: Null Character Search

13

IGNITE™ |P Reference Manual

PTSC

» Byte search
; (cell_source cell_count byte --)

byte_search::

KCg

pop ct ; count
XCg

pop X ; source
copyb

byte_search_loop:

push
Id
Xor

: keep data pattern
[x++]

lestb

pop

skipne

dbr byte_search_loop
; carry set if byte found

pop ; discard pattern

Table 18 Code Example: Byte Search

addexp denorm expdif extexp
extsig norml normr replexp
rnd subexp testexp

Table 19 Floating Point Math Instruction

Floating-Point Math
The instructions above are used to implement efficient
single- and doubl e-precision | EEE floating-point software
for basic math functions (+, -, *, /), and to aid in the
development of floating-point library routines. The
instructions perform primarily the normalization, denor-
malization, exponent arithmetic, rounding and detection of
exceptional numbers and conditions that are otherwise

execution-time-intensive when programmed conven-

tionally. See Floating-Point Math Support on page 23.
All floating-point math instruction opcodes are

formatted as 8-bit values with no encoded fields.

bkpt step

Table 20 Debugging I nstruction

Debugging Features

Each of these instructions signals an exception and
traps to an application-supplied execution-monitoring
program to assist in the debugging of programs. See
Debugging Support.

Both debugging instruction opcodes are formatted as
8-bit values with no encoded fields.

ldo [] lde.i [] stoe []) sto.i []

14

Table 21 On-Chip Resources I nstruction

On-Chip Resources

These instructions allow access to the on-chip
peripherals, status registers, and configuration registers.
All registers can be accessed with the Ido [] and sto []
instructions. Thefirst six registers each contain eight bits,
which are also bit addressable with Ido.i [] and sto.i [].
See On-Chip Resource Registers.

All on-chip resource instruction opcodes are
formatted as 8-bit values with no encoded fields.

All on-chip resource instruction opcodes are
formatted as 8-bit values with no encoded fields.

di
push mode

ei
split

nop pop mode

Table 22 Miscellaneous I nstructions

IGNITE™ |P Reference Manual

Miscellaneous

Thedisable- and enable-interrupt instructions are the
only system control instructions; they are supplied to
make interrupt processing more efficient. Other system
control functions are performed by setting or clearing bits
in mode, or in an on-chip resource register. The
instruction split separates a 32-bit value into two cells,
each containing 16 bits of the original value.

All miscellaneous instruction opcodes are formatted
as 8-bit values with no encoded fields.

Stacks and Stack Caches

The stack caches optimize use of the stack register
resources by minimizing the overhead required for the
allocation and saving of registers during programmed or
exceptional context switches (such as call subroutine
execution and trap or interrupt servicing).

The local-register stack consists of an on-chip
SRAM array that is addressed to behave as a conven-
tional last-in, first-out queue. Local registers rO—+15 are
addressed internally relative to the current top of stack.
TheregistersrO—+14 areindividually addressableand are
always contiguously allocated and filled. If aregister is
accessed that is not in the cache, al the lower-ordinal
registers are read in to ensure a contiguous data set.

The operand stack is constructed similarly, with the
addition of two registers in front of the SRAM stack
cache array to supply inputsto the ALU. These registers
are designated SO and sl, and the SRAM array is
designated s2-s17. Only registers SO, sl and s2 are
individually addressable, but otherwisethe operand stack
behaves similarly to thelocal -register stack. Whereasthe
SRAM array, s2-s17, can become “empty” (see below),
S0 and sl are always considered to contain data.

The stack caches are designed to always allow the
current operation to execute to completion before an
implicit stack memory operation isrequired to occur. No
instruction explicitly pushesor explicitly pops morethan
one cell from either stack (except for stack management
instructions). Thusto allow execution to completion, the
stack cache logic ensuresthat thereis always one or more
cellsfull and one or more cells empty in each stack cache
(except immediately after reset, see Sack Initialization)
before instruction execution. If, after the execution of an

PTSC

instruction, this is not the case on either stack, the
corresponding stack cache is automatically spilled to
memory or refilled from memory to reach this condition
before the next instruction is alowed to execute.
Similarly, the instructions _cache, frame, pop sa, and
pop la, which explicitly change the stack cache depth,
execute to completion, and then ensure the above
conditions exist.

Thusr15 or s17 can be filled by the execution of an
instruction, but they are spilled before the next instruction
executes. Similarly, rO and s2 can be emptied by the
execution of an instruction, but they are filled before the
next instruction executes.

1K Page
Address
Boundary Region
Ox...3FF masked addr = 0x380
0x...380
Middle Region
) masked addr = 0x200
0x...07F Boundary Region
0x...000 masked addr = 0x000

masked addr = addr AND 0x380

Figure 7 Stack Exception Region

15

The stacks can be arbitrarily deep. When a stack
spills, data is written at the address in the stack pointer
and then the stack pointer is decremented by four
(postdecremented stack pointer). Conversely, when a
stack refills, the stack pointer isincremented by four, and
then data is read from memory (preincremented stack
pointer). The stack pointer thus pointsto the next location

IGNITE™ |P Reference Manual

PTSC

to write and the stacks grow from higher to lower memory
addresses. The stack pointer for the operand stack is sa,
and the stack pointer for the local-register stack isla.

Since the stacks are dynamically allocated memory
areas, some amount of planning or management is
required to ensure the memory areas do not overflow or
underflow. The simplest isto allocate a sufficiently large
memory area so that overflow conditions won't occur. In
this case, a correctly written program does not produce
underflow. Alternatively, stack memory can be
dynamically alocated or monitored through the use of
stack-page exceptions.

Sack-Page Exceptions

Stack-page exceptions occur on any stack-cache
memory access near the boundary of any 1024-byte
memory pageto allow overflow and underflow protection
and stack memory management. To prevent thrashing
stack-page exceptions near the margins of the page
boundary areas, once aboundary areais accessed and the
corresponding stack-page exception is signaled, the stack
pointer must move to the middle region of the stack page
before another stack-page exception can be signaled. See
Figure 9.

Stack-page exceptions enable stack memory to be
managed by allowing stack memory pages to be
reallocated or relocated when the edges of the current
stack page are approached. The boundary regions of the
stack pages are located 32 cells from the ends of each
page to alow even a _cache or _frame instruction to
execute to completion and to allow for the corresponding
stack cache to be emptied to memory. Using the stack-
page exceptions requires that only 2 KB of addressable
memory be alotted to each stack at any given time: the
current stack page and the page near the most recently
encroached boundary.

Each stack supports stack-page overflow and stack-
page underflow exceptions. These exception conditions
are tested against the memory address that is accessed
when the corresponding stack spillsor refills between the
execution of instructions. mode contains bits that signal
local-stack overflow, local-stack underflow, operand stack
overflow and operand stack underflow, as well as the
corresponding trap enable bits.

The stack-page exceptions havethe highest priority of
al of thetraps. Asthisimplies, it isimportant to consider
carefully the stack effects of the stack trap handler code so
that stack-page boundaries are not be violated during its

16

execution. Additionally, a memory fault must not occur
during astack page access. The stack page exceptionsare
intended to be used to ensure valid stack pages can aways
be accessed without memory faults.

Since stack-page exceptions can occur on any stack
spill or refill, usage of certain stack-cache management
instructions (_depth and _cache) must be modified to
ensure the expected result. A stack-page exception can
occur after the stack-cache management instruction and
thus modify the cache state. To prevent this, the
instruction must complete without a stack spill or refill
that would cause a stack-page exception. This can be
accomplished by either causing asimilar stack effect prior
to executing the instruction, or by executing the
instruction twiceinimmediate sequence. Seethe supplied
stack management code examplesin this section.

init_stacks::

: Create a stack area below xx_base in
; memory. One cell is read in to initialize s2/r0.

push.l #os_base-8 ; adjust for postincr and
; one refill

pop sa ; read os_base-4

: 50 and s1 are uninitialized

push.l #ls_base-8 ; adjust for postincr and

; one refill

:read Is_base-4

pop la

Table 23 Code Example: Stack I nitialization

Sack I nitialization

After CPU reset both of the CPU stacks should be
considered uninitialized until the corresponding stack
pointers are loaded, and this should be one of the first
operations performed by the CPU.

After areset, the stacks are abnormally empty. That
is, r0 and s2 have not been allocated, and are all ocated on
the first push operation to, or stack pointer initialization
of, the corresponding stack. However, popping the pushed
cell causesthat stack to be empty and require arefill. The
first pushed cell should therefore be left on that stack, or
the corresponding stack pointer should be initialized,
before the stack is used further. See Table 23.

IGNITE™ |P Reference Manual PTSC

Sack Depth

Thetotal number of cellson each stack canreadily be
determined by adding the number of cellsthat have spilled
to memory and the number of cellsin the on-chip caches.
See Table 24.

; Operand stack depth
os_depth::
push.n #-2
scache
pop ; ensure 3 spaces available
quad 2 ; keep up to push sa
sdepth ; uninterruptable
push sa
push.l #-(os_base-4)
add ; compute memaory used
shr #1
shr #1 ; convert to cells
add ; total on-chip & off
Is_depth:
push.n #-2
scache
pop ; ensure 3 spaces available
quad 2 : keep up to push la
Idepth ; uninterruptable
push la
push.l #-(Is_base-4)
add ; compute memory used
shr #1
shr #1 ; convert to cells
add ; total on-chip & off

Table 24 Code Example: Stack Depth

17

; Context switch: save context
Save off any gloabls required and flush stacks

save_context:
; Save globals and mode, x, ct as required
push g0
push g1
; save any others required

; gx, mode, x, ct...

; Flush stacks to memory

; add one cell to local-register stack so on-chip

; part can spill.

push.b #-14 ; count for _cache
pop Istack

push rQ ; count for Icache

; ensure no interrupts between flush and la read

.quad 4

push ; ensure space for lcache value
pop ; wio overflow trap occurring
lcache ; write out spillable area

push la ; save pointer

; add three cells to stack so on-chip part can spill
push

push

push 0 ; count for scache

; ensure no interrupts between flush and sa read

quad 4

push ; ensure space for scache value
pop : wio overflow trap occurring
scache ; write out all of spillable area
push sa

push.| #sp_save_area
st [; save off stack pointer

» Now load new context and continue

Table 25 Code Example: Save Context

Stack Flush and Restore

When performing a context switch, it is necessary
to spill the datain the stack caches to memory so that
the stack caches can be reloaded for the new context.

PTSC IGNITE™ IP Reference Manual

; Context switch: reslore context
Restore stack pointer and globals.

restore_context::

push.l #sp_save_area
Id [; retrieve save stack pointer
pop 58 : restore it, s2 refills...

: other refill when accessed

pop
pop : bring s2 to s0
pop la s restore it, rO refills...

: other refill when accessed

; Restore mode, x, ct and globals as required
; restore last saved first
; cl, x, mode, gx...

pop g1
pop g0 » and first saved last
ret ; return to suspended

; execution

Table 26 Code Example: Restore Context

18

Attention must be given to ensure that the parts
of the
stack caches that are always maintained on-chip, rO
and s0-s2, are forced into the spillable area of the
stack caches so that they can be written to memory.
Code examples are given for context switches that
include flushing and restoring the cachesin Table 25
and Table 26, respectively.

Exceptions and Trapping

Exception handling is precise and ismanaged by
trapping to executable-code vectorsin low memory.
Each 32-bit vector location can contain up to four
instructions. This allows servicing the trap within
those four instructions or branching to alonger trap
routine. Traps are prioritized and nested to ensure
proper handling. The trap names and executable
vector locations are shown in Figure 3.

IGNITE™ |P Reference Manual

Stack Depth
Change
Operand L ocal-
Sack Register
Sack Traps

+n 0 Operand Stack Overflow

-Nn 0 Operand Stack Underflow

0 +1 Loca Stack Overflow

0 -1 Loca Stack Underflow

+1 -n Loca Stack Underflow
Operand Stack Overflow
Local Stack Underflow and
Operand Stack Overflow

-1 +n Loca Stack Overflow
Operand Stack Underflow
Loca Stack Overflow and Op-
erand Stack Underflow

-1 -n Local Stack Underflow
Operand Stack Underflow
Local Stack Underflow and
Operand Stack Underflow

Notes:

1.+n>0,n<0

2. If the instruction reads or writes memory or if a posted
writeisin progress, amemory fault can also occur.

3. If theinstruction is single-stepped, a single-step trap also
occurs.

4. If any trap occurs, aloca-register stack overflow could
also occur.

Table 27 Traps Dependent on System State

An exception is said to be signaled when the defined
conditions exist to cause the exception. If the trap is
enabled, thetrap isthen processed. Trapsare processed by
the trap logic, which causes a cal subroutine to the
associated executable-code-vector address. When multiple
traps occur concurrently, the lowest-priority trap is
processed first, but before the executable-code vector is
executed, the next-higher-priority trap isprocessed, and so
on, until the highest-priority trap is processed. The
highest-priority trap’s executable-code vector then
executes. The nested executable-code-vector return

PTSC

addresses unnest as each trap handler executes ret, thus
producing the prioritized trap executions.

Interrupts are disabled during trap processing and
nesting, until an instruction that begins in byte one of an
instruction group is executed. Interrupts do not nest with
the traps since their request state is maintained in the
INTC registers.

Table 28 lists the priorities of each trap. Traps that
can occur explicitly due to the data processed or instruc-
tion executed are listed in Table 29. Traps that can occur
due to the current state of the system, concurrently with
the trapsin Table 29, are listed in Table 27.

Priority Traps
1 (highest) | local-register stack overflow
2 operand stack overflow
3 local-register stack underflow
4 operand stack underflow
5 memory fault
6 floating-point exponent
floating-point underflow
floating-point overflow
floating-point round
7 floating-point normalize
8 breakpoint
9 (lowest) | single step

Table28 Trap Priorities

PTSC

IGNITE™ |P Reference Manual

Instruction Trap Combinations
addexp Floating Point Underflow,
Floating Point Overflow
bkpt Breakpoint
denorm Floating Point Normalize
norml Floating Point Underflow,
Floating Point Normalize,
Floating Point Underflow and
Floating Point Normalize
normr Floating Point Overflow,
Floating Point Normalize,
Floating Point Overflow and
Floating Point Normalize
rnd Floating Point Round
step Single Step
subexp Floating Point Underflow,
Floating Point Overflow
testexp Floating Point Exponent

Table 29 Traps I ndependent of System Sate

Floating-Point Math Support

The CPU supports single-precision (32-bit) and
double-precision (64-bit) IEEE floating-point math
software. Rather than a floating-point unit and the silicon
area it would require, the CPU contains instructions to
perform most of the time-consuming operations required
when programming basi ¢ floating-point math operations.
Existing integer math operations are used to supply the
core add, subtract, multiply, and divide functions, while
specia instructions are used to efficiently manipulate the
exponents and detect exception conditions. Additionally, a
three-bit extension to the top one or two stack cells
(depending on the precision) is used to aid in rounding
and to supply the required precision and exception
signaling operations.

Single Precision
31 30 23 22 0
| | exponen l significan |
sign hidden
Double Precision
31 0
| significand |
31 30 20 19 0
| | exponen | significand |
sign Lhidden

Figure 8 Floating-Point Number Formats

Data Formats

Though single- and double-precision IEEE formats
are supported, from the perspective of the CPU, only 32-
bit values are manipulated at any one time (except for
double shifting). See Figure 8. The CPU instructions
directly support the normalized data formats depicted.
Therelated denormalized formats are detected by testexp
and fully supportable in software.
Satus and Control Bits

mode contains 13 bits that set floating-point
precision, rounding mode, exception signals, and trap
enables. See Figure 9.

cleared by:
testexp replexp

shifted into by:
denorm normr shift shiftd
shr #1 shr #8 shrd #1

shifted out of by:
norml

tested by:

rnd

read by:

push mode

written by:
pop mode

Table 30 GRS Extension Bit M anipulation
Instructions

IGNITE™ |P Reference Manual PTSC

GRS Extension Bits
To maintain the precision required by the IEEE
standard, more significand bits are required than are held

in the IEEE format numbers. These extra bits are used to Sign of
hold bits that have been shifted out of the right of the :
significand. They are used to maintain additional ct o R = Action
precision, to determine if any precision has been lost Round to nearest or even
during processing, and to determine whether rounding
should occur. The three bits appear in mode so they can be X 0 | x | x | donothing
saved, restored and manipulated. Individually, the bitsare , _
named guard bit, round bit and sticky bit. Severa « 1 0 0 'O?C;)emem S0, clear bit0
instructions manipulate or modify the bits. See Table 30.

When denorm and normr shift bits into the GRS X 1 any 1 increment s0
extension, the source of the bits is aways the least-
significant bits of the significand. In single-precision Round toward negative infinity
mode the GRS extension bits are taken from S0, and in]
double-precision mode the bits are taken from sl. For 0 X | x | x | donothing
conventional right shifts, the GRS extension bits always 1 0| o] 0| donothing
comefromtheleast significant bitsof the shift (i.e,, 0if a
single shift and sl if a double shift). The instruction 1 any 1 increment O
norml is the only instruction to shift bits out of the GRS
extension; it shifts into s0 in single-precision mode and Round toward positive infinity
into s1 in double-precision mode. Conventional |eft shifts 0 o] o] o] donothing
aways shift in zeros and do not affect the GRS extension
bits. 0 any 1 increment sO
Rounding 1 X | x | x | donothing

The GRS extension maintains three extra bits of
precision while producing a floating-point result. These Round toward zero
bits are used to decide how to round the result to fit the X x | x | x | donothing

destination format. If one views the bits as if they were
just to the right of the binary point, then guard_bit has a
position value of one-haf, round_bit has a positional
value of one-quarter, and sticky_bit hasapositional value
of one-eighth. The rounding operation selected by
fp_round_mode uses the GRS extension bitsand the sign
bit of ct to determine how rounding occurs. If guard_bitis
zero the value of GRS extension is below one-half. If
guard_bit isonethevalue of GRS extensionisone-half or
greater. Since the GRS extension bits are not part of the
destination format they are discarded when the operation
iscomplete. Thisinformation isthebasisfor the operation
of the instruction rnd.

Table 31 Rounding M ode Action

21

IGNITE™ |P Reference Manual

PTSC

; Floating-Point Multiply
;(r1r2 -- product)

léste;p
addexp
pop ct ; save sign & exp sum

; A 24-bit x 24-bit multiply makes a 47 to 48-bit product,
; leaving 16-bits in the high cell. If we multiply 32-bit x
; 24-bit we get a 56-bit product with 24-bits in the high
. part, which is what we want.

: make into a 32-bit multiplier
shi #8

pop go

shi
push.n

#1
#0

mulu
XxCg
pop ; discard low part
normr

rid

normr

push
replexp

Table 32 Code Example: Floating-Point M ultiply

Most rounding adjustments by rnd involve doing
nothing or incrementing sO. Whether this is rounding
down or rounding up depends on the sign of the floating-
point result that isin ct. If the GRS extension bitsare non-
zero, then doing nothing has the effect of “rounding
down” if the result is positive, and “rounding up” if the
result is negative. Similarly, incrementing the result has
the effect of “rounding up” if the result is positive and
“rounding down” if the result is negative. If the GRS
extension bits are zero then the result was exact and
rounding is not required. See Table 31.

In practice, the significand (or the lower cell of a
double-precision significand) is in s0, and the sign and
exponent are in ct. carry is set if the increment from rnd
carried out of bit 31 of s0; otherwise, carry is cleared.
Thisallows carry to be propagated into the upper cell of a
double-precision significand.

22

Exceptions

To speed processing, exception conditions detected
by the floating-point instructions set exception signaling
bitsin mode and, if enabled, trap. Thefollowing trapsare
supported:

» Exponent signaled from testexp

* Underflow signaled from norml, addexp,
subexp

* Overflow signaded from normr, addexp,
subexp

* Normalize signaled from denorm, norml,
normr

* Rounded signaled from rnd

Exceptionsare prioritized when the instruction completes
and are processed with any other system exceptions or
traps that occur concurrently. See Exceptions and

Trapping.

» Exponent Trap: Detects specia-case exponents. If the
tested exponent isall zerosor al ones, carry is set and the
exception is signaled. Setting carry allows testing the
result without processing a trap.

* Underflow Trap: Detectsexponentsthat have become
too small due to calculations or decrementing while
shifting.

» Overflow Trap: Detects exponentsthat have become
too large due to calculations or incrementing while
shifting.

* Normalize Exception: Detects bitslost dueto shifting
into the GRS extension. The exception conditionistested
at the end of instruction execution and issignaled if any of
the bitsin the GRS extension are set. Testing at thistime
allows normal right shifts to be used to set the GRS
extension bits for later floating-point instructions to test
and signal.

* Rounded Exception: Detects a change in bit zero of
<0 due to rounding.

Hardware Debugging Support

The CPU containsabreakpoint instruction, bkpt, and
a single-step instruction, step. The instruction bkpt
executes the breakpoint trap and supplies the address of
the bkpt opcode to the trap handler. Thisallows execution
at full processor speed up to the breakpoint, and then

IGNITE™ |P Reference Manual

execution in a program-controlled manner following the
breakpoint. step executes the instruction at the supplied
address, and then executesthesingle-step trap. Thesingle-
step trap can efficiently monitor execution on an
instruction-by-instruction basis.

Breakpoint

Theinstruction bkpt performs an operation similar to
acall subroutine to address 0x134, except that the return
addressisthe address of the bkpt opcode. Thisbehavior is
required because, dueto theinstruction push.l, the address
of acall subroutine cannot always be determined fromits
return address.

Commonly, bkpt is used to temporarily replace an
instruction in an application at a point of interest for
debugging. Thetrap handler for bkpt typically restoresthe
original instruction, displaysinformation for the user, and
waits for a command. Or, the trap handler could be
implemented as a conditional breakpoint to check for a
termination condition (such as a register value or the
number of executions of this particular breakpoint),
continuing execution of the application until the condition
is met. The advantage of bkpt over step is that the
applications executes at full speed between breakpoints.

Single-Sep

Theinstruction step is used to execute an application
program one instruction at a time. It acts much like a
return from subroutine, except that after executing one
instruction at the return address, atrap to address 0x138
occurs. The return address from the trap is the address of
the next instruction. The trap handler for step typicaly
displays information for the user, and waits for a
command. Or, the trap handler could instead check for a
termination condition (such as a register value or the
number of executions of this particular location),
continuing execution of the application until the condition
ismet.

Step isprocessed and prioritized similarly to the other
exception traps. This means that all traps execute before
the step trap. Theresult isthat step cannot directly single-
step through the program code of other trap handlers. The
instruction step is normally considered to be below the

23

PTSC

; Memory-fault trap handler
memflt_handler::

push mode

di

; Get data (if any) and fault address.

push.l #mfltdata ; must be read first
Ido]
push.l #mifltaddr ; must be read last
Ido 1]

; Now go and get the faulted page from disk
; into memory, update the mapping SERAM, etc.
; (mode data addr -- mode data addr)

; If memory fault occurred while attempting a
; posted write, perform the write in the handler.

; check if fault was read or write

push s2 ; duplicate mode
push.l #mfit_write

and

bz discard_location ; write fault?
push.l #miscc

Ido 1]

push.b #mspwe

and ; posted write?
quad 3

skipz stack.discard_location

st 1] ; complete it
push : maintain 2 items

discard_location::

:discard "address”
; discard "data”

pop
pop

: Reset exception-signal bit.

push.l #mflt_exc_sig
1and
pop mode

; For non-posted-write faults, the load/store/pre
-fetch retries on return.

ret

Table 33 Code example: Memory Fault Service
Routine

IGNITE™ |P Reference Manual

PTSC

operating-system level, thus operating-system functions
such as stack-page traps must execute without its
intervention.

Higher-priority trap handlers can be single-stepped by
re-prioritizing them in software. Rather than directly
executing a higher-priority trap handler from the
corresponding executable trap vector, the vector would
branch to code to rearrange the return addresses on the
return stack to change the resulting execution sequence of
thetrap handlers. Various housekeeping tasks must also be
performed, and the various handlers must ensure that the
stack memory area boundaries are not violated by the re-
prioritized handlers.

Register mode

mode containsavariety of bitsthat indicate the status
and execution options of the CPU. Except as noted, all
bits are writable. The register is shown in Figure 9.

mflt_write
After amemory-fault exceptionissignaled, indicates
that the fault occurred due to a memory write.

guard_hit

The most-significant bit of a 3-bit extension below
the least-significant bit of sO (sl, if fp_precision is set)
that is used to aid in rounding floating-point numbers.

round_bit

The middle bit of a 3-bit extension below the least-
significant bit of sO (s, if fp_precisionis set) that isused
to aid in rounding floating-point numbers.

sticky_bit

Theleast-significant bit of a3-bit extension below the
least-significant bit of SO (s, if fp_precisionisset) thatis
used to aid in rounding floating-point numbers. Once set
due to shifting or writing the bit directly, the bit stays set
even though zero bitsare shifted right throughiit, until itis
explicitly cleared or written to zero.

mflt_trap_en
If set, enables memory-fault traps.

24

mflt_exc sig
Set if amemory fault is detected.

Is_boundary

Setif Is ovf_exc_sigorls unf_exc_sig becomes set
as the result of a stack spill or refill. Cleared when the
address in la, as the result of a stack spill or refill, has
entered the middle region of a 1024-byte memory page,
and when la is written. Used by the local-register stack
trap logic to prevent unnecessary stack overflow and
underflow traps when repeated |ocal-register stack spills
and refills occur near a 1024-byte memory page boundary.
Not writable.
Is unf_trap_en

If set, enablesalocal -register stack underflow trap to
occur after alocal-register stack underflow exception is
signaled.

Is unf_exc sig

Set if alocal-register stack refill occurs, Is_boundary
is clear, and the accessed memory address is in the last
thirty-two cells of a 1024-byte memory page.

Is ovf_trap en

If set, enables alocal-register stack overflow trap to
occur after a local-register stack overflow exception is
signaled.

Is ovf_exc sig

Set if alocal-register stack spill occurs, Is_boundary
is clear, and the accessed memory address is in the first
thirty-two cells of a 1024-byte memory page.

os_boundary

Setif os ovf_exc_sigor os unf_exc sigbecomesset
as the result of a stack spill or refill. Cleared when the
address in sa, as the result of a stack spill or refill, has
entered the middle region of a 1024-byte memory page,
and when sa is written. Used by the operand stack trap
logic to prevent unnecessary stack overflow and
underflow traps when repeated operand stack spills and
refills occur near a 1024-byte memory page boundary.
Not writable.

IGNITE™ |P Reference Manual

os_unf_trap_en

If set, enables an operand stack underflow trap to
occur after an operand stack underflow exception is

signaled.

os _unf_exc_sig

thirty-two cells of a 1024-byte memory page.

Local-Register Stack

" Mnemonic

—————— Is_boundary
—— Is_unf_trap_en

Is_unf_exc_sig
Is_ovf_trap_en
— Is_ovf_exc_sig

Description
boundary area entered
underflow trap enable
underflow exception signal
overflow trap enable
overflow exception signal

Operand Stack

os_boundary

os_unf_trap_en
os_unf_exc_sig
os_ovf_trap_en

(os_ovf_exc_sig

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Mnemonic Description
boundary area entered
underflow trap enable
underflow exception signal
overflow trap enable

overflow exception signal

iR

L]

interrupt_en

Mnemonic Description
carry carry flag
power_fail power fail occurred

global interrupt enable

Memory Fault

Mnemonic Description
— mfit_exc_sig exception signal
mfit_trap_en trap enable
mfit_write fault was a write

Floating Point

T -
Mnemonic

— sticky_bit
round_bit
guard_bit
fp_rnd_exc_sig
fp_rnd_trap_en
fp_nrm_exc_sig
fp_nrm_trap_en
fp_ovf_exc_sig
fp_ovf_trap_en

fp_unf_exc_sig
fp_unf_trap_en
fp_exp_exc_sig
fp_exp_trap_en
fp_round_mode

fp_precision

Description
rounding sticky bit
rounding round bit
rounding guard bit
round exception signal
round trap enable
normalize exception signal
normalize trap enable
overflow exception signal
overflow trap enable
underflow exception signal
underflow trap enable
exponent exception signal
exponent trap enable
rounding mode (O=nearest,
1= #nfinity, 2=+infinity, 3=zero)
precision (0O=single, 1=double)

PTSC

Set if an operand stack refill occurs, os_boundary is
clear, and the accessed memory address is in the last

Figure9 Register Mode

25

IGNITE™ |P Reference Manual

PTSC

os ovf trap_en
If set, enables an operand stack overflow trap to occur
after an operand stack overflow exception is signaled.
os ovf_exc sig
Set if an operand stack spill occurs, os_boundary is
clear, and the accessed memory address is in the first
thirty-two cells of a 1024-byte memory page.

carry
Contains the carry bit from the accumulator. Saving
and restoring mode can be used to save and restore carry.

power_fail

Set during power-up to indicate that a power failure
has occurred. Cleared by any write to mode. Otherwise,
not writable.

interrupt_en
If set, interrupts are globally enabled. Set by the
instruction e, cleared by di.

fp_rnd_exc sig
If set, aprevious execution of rnd caused achangein
the least significant bit of SO (s1, if fp_precision is set).

fp_rnd_trap_en
If set, enables a floating-point round trap to occur
after a floating-point round exception is signaled.

fp_nrm_exc_sig

If set, one or more of the guard_bit, round_bit and
sticky_bit were set after a previous execution of denorm,
norml or normr.

fp_nrm_trap_en
If set, enablesafloating-point normalizetrap to occur
after a floating-point normalize exception is signaled.

fp_ovf_exc sig

If set, a previous execution of normr, addexp or
subexp caused the exponent field to increase to or beyond
all ones.

fp_ovf_trap_en
If set, enables afloating-point overflow trap to occur
after a floating-point overflow exception is signaled.

26

fp_unf_exc sig

If set, a previous execution of norml, addexp or
subexp caused the exponent field to decreaseto or beyond
all zeros.

fp_unf_trap _en

If set, enables a floating-point underflow trap to
occur after a floating-point underflow exception is
signaled.

fp_exp_exc sig
If set, a previous execution of testexp detected an
exponent field containing all ones or all zeros.

fp_exp_trap_en
If set, enablesafloating-point exponent trap to occur
after a floating-point exponent exception is signaled.

fp_round_mode
Containsthe type of rounding to be performed by the
CPU instruction rnd.

fp_precision

If clear, the floating-point instructions operate on
stack values in |EEE single-precision (32-bit) format. If
set, the floating-point instructions operate on stack values
in |EEE double-precision (64-bit) format.

CPU Reset

The CPU begins executing at address 0x80000008
with the mode register set to all zeros.

Interrupts

The CPU contains an on-chip prioritized interrupt
controller that supports up to eight different interrupt
levels. Interrupts can be received through the bit inputs or
can beforced in software by writingto ioin. For complete
details of interrupts and their servicing, see Interrupt
Controller.

Bit Inputs
The CPU contains eight general-purpose bit inputs

that are shared with the INTC as requests for those
services. The bitsare taken from 1 N[7:0]. See Bit Inputs.

IGNITE™ |P Reference Manual

Bit Outputs

The CPU contains eight general-purpose bit outputs
which can be written by the CPU. The bits are output on
OUT[7:0]. See Bit Outputs.

14"
step

bkpt br
mloopx push.l

dbr
st!

1 See text.

Table 34 I nstructions that Hold-off Pre-fetch

The CPU issues bus requests ordered to optimize
execution. To keep executing instructions as much as
possible, the next group of instructions are fetched while
the current group executes. This is referred to as
instruction pre-fetch. Instruction pre-fetch beginsas soon
as an instruction group begins to execute unlessit is held
off. Pre-fetchisheld off if the executing instruction group
contains one of the instruction in Table 34. Id and st only
hold-off pre-fetch if they occur as the first instruction in
the executing instruction group. Knowing which
instruction hold-off pre-fetch is useful when programming
bus configuration information.

Posted-Write

The CPU supports a one-level posted write. This
allows CPU execution to continue unimpeded after the
write is posted. To maintain memory coherency, posted
writes have the highest priority of all CPU bus requests.
This guarantees that memory reads following a posted
write will always retrieve the most up-to-date data.

On-Chip Resources

The non-CPU hardware features of the CPU are
generally accessed by the CPU through a set of 8
registers located in their own address space. Using a
separate address space simplifies implementation,
preserves opcodes, and prevents cluttering the normal
memory address space with peripherals. Collectively
known as the On-Chip Resources, these registers allow
access to the bit inputs, bit outputs, INTC and system
configuration. These registers and their functions are
referenced throughout this manual and are described in
detail in On-Chip Resource Registers.

27

PTSC

Instruction Reference

As a stack-based CPU architecture, the IGNITE
PROCESSOR CPU instructions have documentation
requirements similar to other stack-based systems, such as
the Java Virtual Machine (JVM) and American National
Standard Forth (ANS Forth). Not surprisingly, many of
the VM and ANS Forth operations areinstructionsonthe

IGNITE CPU. Asaresult, the VM and ANS Forth stack
notation used for language documentation is useful for
describing IGNITE CPU ingtructions. The basic
notation adapted for the IGNITE CPU is:

(input_operands -- output_operands)

(L: input_operands -- output_operands)
where “--" indicates the execution of the instruction.
“Input_operands’ and “output_operands’ are lists of
values on the operand stack (the default) or local register
stack (preceded by “L:"). These are similar, though not
always identical, to the source and destination operands
that can be represented within instruction mnemonics. The
value held in the top-of-stack register (sO or r0) isalways
on the right of the operand list with the values held in the
higher ordinal registers appearing to the left (e.g., S2 sl
s0). The only itemsin the operand lists are those that are
pertinent to the instruction; other values may exist under
these on the stacks. All of the input_operands are
considered to be popped off the stack, the operation
performed, and the output_operands pushed on the stack.
For example, a notational expression of:

nln2--n3
represents two input operands, n1 and n2, and one output
operand, n3. For theinstruction add, n1 (taken fromsl) is
added to n2 (taken from s0), and the result is n3 (left in
S0). If the name of avalue on the left of either diagramis
the same as the name of a value on the right, then the
value was required, but unchanged. The name represents
the operand type. Numeric suffixes are added to indicate
different or changed operands of the same type. The
values may be bytes, integers, floating-point numbers,
addresses, or any other type of valuethat canbeplacedin
asingle 32-hit cell.

addr address

byte character or byte (upper 24 bits zero)
n integer or 32 arbitrary bits

other text integer or 32 arbitrary bits

IGNITE™ |P Reference Manual

PTSC

ANS Forth defines other operand types and operands
that occupy more than one stack cell; those are not used
here.

Note that typically all stack action is described by
the notation and isnot explicitly described inthetext. If
there are multiple possible outcomes then the outcome
optionsare on separate linesand are to be considered as
individual cases. If other registers or memory variables
are modified, then that effect is documented in the text.

Also on the stack diagram line is an indication of
the effect on carry, if any, as well as the opcode and
execution time at the right margin.

A timing with an “M” indicates the specified
number of bus requests and bus transactions (memory
cycles) for the instruction to complete. The value used
for “M” includes both the bus request and bus
transaction times and depends on the memory interface
implemented.

Timings do not include implied memory cycles
such as stack spillsand refillsrequired to maintain the
state of the stack caches. Any operation that pushes or
popsastack, or referencesalocal register could causea

28

memory cycle. Operations that wait on the completion
of ingtruction pre-fetch arelabeled “M prefetch.” These
are digtinct in that pre-fetch occurs in paralel with
execution so the wait time is probably not a full
memory cycle.

ANS Forth Word Equivalents

Those IGNITE CPU instructions that are exact
equivalents of ANS Forth words are indicated in the
body text for the instruction. Many additional ANS
Forth words simply require ashort instruction sequence,
but these are not indicated.

Java Byte Code Equivalents

Those IGNITE CPU instructions that are exact
equivalents of Javabyte codes areindicated in the body
text for the IGNITE CPU instruction. Many additional
Java byte codes simply require a short instruction
seguence, though the most complex byte codes require
a subroutine call. For detailed information contact
PTSC.

IGNITE™ |P Reference Manual PTSC

add

add(nln2--n3) carry+ 1100 0000
0xCO
1 CPU-clock

Add nl and n2 giving the sum n3. carry is set if thereisacarry out of bit 31 of the sum and cleared otherwise.

Equivalent to Java byte code iadd.
Equivaent to ANS Forth word +.

add pc (nl--n2) 10111011

0xBB

1 CPU-clock

Add the value of pc (the byte-aligned address of the add pc opcode) to n1 giving the sum n2. carry isset if thereisa
carry out of bit 31 of the sum and cleared otherwise.

adda

Add Address
adda (nln2--n3) 1110 1000
OxES8
1 CPU-clock
Add nl and n2 giving the sum n3. carry is unaffected.
addc
Add with Carry
addc (nln2--n3) carryt 1100 0010
oxC2
1 CPU-clock
Add nl and n2 and carry giving the sum n3. carry isset if thereisacarry out of bit 31 of the sum, otherwisecarry is
cleared.

29

PTSC IGNITE™ IP Reference Manual

addexp

Add Exponents
addexp (nln2--n3n4n5) 1101 0010
0xD2
2 CPU-clocks
(L:--addr) onlywhen trap processed 4+M CPU-clocks

Perform the following:

Exponent_Field(n5) = Exponent_Field(nl) - BIAS + Exponent_Field(n2)

Sign_Bit(n5) = Sign_Bit(n1) XOR Sign_Bit(n2)
BIASis 127 (0x3F800000 in position) for single precision and 1023 (0x3FFO0000in position) for double precision,
as selected by fp_precision.

CoCPUte asdescribed above. Clear the exponent field bitsand sign bit and set the hidden bit of n1 and n2, givingn3
and n4, respectively. n5 isthe result of the coCPUtation. After completion, if the exponent-field cal culation result
equaled or exceeded the maximum value of the exponent field (exponent field result 0 255 for single, exponent field
result [0 2047 for double) an overflow exception is signaled. If the exponent-field calculation result is less than or
equal to zero an underflow exceptionissignaled. When an exception issignaled, the exponent field of n5 containsas
many low-order bits of the coCPUted exponent as it will hold.

and
BitwissAND
and(nln2--n3) carry clear 1110 0001
OxEl
1 CPU-clock

Perform a bitwise AND of nl and n2 giving the result n3.
Equivalent to Java byte code iand.

Equivalent to the ANS Forth word AND.

30

IGNITE™ |P Reference Manual PTSC

bkpt

Breakpoint
(--) 0011 1100

(L:--addr) 0x3C
1+M CPU-clocks

Perform acall subroutine to the breakpoint trap location, 0x134. addr isthe address of the bkpt instruction. Typicaly
the breakpoint service routine replaces the bkpt opcode at addr with the original opcode, performs whatever
debugging function desired, and ret to addr.

bkpt

Equivalent to Java byte code breakpoint.

31

PTSC IGNITE™ IP Reference Manual

b

Branch if Condition

br offset (--) 0000 Oxxx
Branch Unconditionally 0x0?
M CPU-clocks

Transfer execution to offset cells from the beginning of the current instruction group.

The instruction adds the two's-complement cell offset encoded within and following the br opcode to pc, and
transfers execution to the resulting cell-aligned address.

Equivalent to Java byte codes goto, goto_w.

Equivalent to the run-time for the ANS Forth words AGAIN, AHEAD, ELSE.

br [] (addr --) 0100 1011
Branch Indirect 0x4B
M CPU-clocks

Replace the value in pc with addr to transfer execution to addr. Note that addr is an absolute byte-aligned address
and not an offset.

bz offset (n--) 0001 Oxxx
Branch if Zero 0x1?
M CPU-clocks

If nis zero, transfer execution to offset cells from the beginning of the instruction group; otherwise, continue
execution at the next instruction group.

If niszero theinstruction addsthe two's-complement cell offset encoded within and following the bz opcodeto pc,
and transfers execution to the resulting cell-aligned address. If n is non-zero execution continues with the next
instruction group.

Equivalent to Java byte codesifeq, ifnull.

Equivalent to the run-time for the ANS Forth words IF, UNTIL, WHILE.

32

IGNITE™ |P Reference Manual PTSC

dbr offset () 0001 1xxx
Decrement CT and Branch 0x1?
M CPU-clocks

Decrement ct by one. If ctisnon-zero, transfer execution to offset cellsfrom the beginning of the current instruction
group; otherwise, continue execution with the next instruction group.

Theinstruction decrements ct by one. If theresulting ct is non-zero the instruction then adds the two's-complement
cell offset encoded within and following the dbr opcode to pc, and transfers execution to the resulting cell-aligned
address. If the resulting ct is zero execution continues with the next instruction group.

cache

Fill/Empty Stack Cache

The cacheinstructions are used to optimize program execution, or to make program execution more deterministic. Stack
cache spills and refills can be caused to occur at preferential times, and to occur in bursts to optimize memory access.
Executing the instruction with both n and n-14 (n>0) ensures that an exact number of items are in the stack cache.
Pushing dummy val ues onto the stack (one value for thelocal -register stack, three valuesfor the operand stack) and then
executing the instruction with n = -14 causes al previously held data to be spilled to memory. Note that if stack-page
exceptions are enabled, atrap might occur and change the state of the stacks from that set by the cacheinstruction. See
Sack-Page Exceptions on page ?.

Icache (n--) 0100 1101

0x4D

1 or (IM to 14M) CPU-clocks

If n> 0, ensurethat at least n cells can be removed from thelocal -register stack without causing local-register stack
cacherefills. Cells are refilled from memory into the cache if required. (1 0 n O 14).

If n <0 (two's complement), ensure that at least NI cells can be added to the local-register stack without causing
local-register stack cache spills. Cells are spilled from the stack cache to memory if required. (-14 0 n O -1).

If n= 0 thelocal-register stack cache is unchanged.

scache (n--n) 0100 0101

0x45

1 or (1M to 14M) CPU-clocks

If n> 0, ensure that at least n cells can be removed from the operand stack without causing operand stack cache
refills. Cells are refilled from memory into the cache if required. (1 0 n O 14).

If n < 0 (two's complement), ensure that at least (InJ cells can be added to the operand stack without causing
operand stack cache spills. Cells are spilled from the stack cache to memory if required. (-14 0 n O -1)

If n = 0the operand stack cache is unchanged.

33

PTSC IGNITE™ IP Reference Manual

call

Call Subroutine

call offset (--) 0000 1xxx
(L:--addr) 0x0?

Call Subroutine 1+M CPU-clocks

Transfer execution to offset cellsfrom the beginning of the current instruction group. addr isthe cell-aligned address
of the next instruction group.

Theinstruction pushesaddr onthelocal-register stack and then adds the two's-complement cell offset encoded with-
in and following the call opcode to pc, and transfers execution to the resulting cell-aligned address. The offset isin
the same form and follows the same rules as those for branches.

cal [] (addrl--) 0100 1110
(L:--addr2) Ox4E
Call Subroutine Indirect 1+M CPU-clocks

Replace the value in pc with addr1 to transfer execution there. addr2 is the byte-aligned address of the next
instruction following call []. Note that addr1 is an absolute address and not an offset.

cmp
Compare
cmp (nln2--n1n2) carryt 11001011
0xCB
1 CPU-clock
Compare n2 and nl as signed values. Set carry if nl < n2, otherwise clear carry.
copyb
Copy Byte Across Cell
copyb (nl--n2) 1101 0000
0xDO
1 CPU-clock

n2 isthe result of copying the lowest byte of nl into each of the higher byte positions. For example, 0x12345678
becomes 0x78787878.

34

IGNITE™ |P Reference Manual

dbr See b..

dec

Decrement

dec #1 (nl--n2)

Subtract one from nl leaving the result n2.
Equivalent to ANS Forth word 1-.

dec #4 (n1--n2)

Subtract four from nl leaving the result n2.

dec ct, #1 (-)

Subtract one from ct.

denorm

Denormalize

denorm (nl--n2) if singleprecision

(n1n2--n3n4) if double precision

(L:--addr) only when trap processed

PTSC

1100 1111
OxCF
1 CPU-clock

1100 1101
OxCD
1 CPU-clock

1100 0001
0xC1
1 CPU-clock

1100 0101
0xC5
1to 13 CPU-clocks

3+M to 15+M CPU-clocks

Shift n1 (or n2n1 if double) right by the bit count in the exponent field of ct. Bits shift out of theright into the GRS
extension. If any bitinthe GRS extension is set, anormalize exception issignaled. Thelocation of the exponent field

depends on fp_precision. The exponent field of ct is decremented to zero.

Shifting is performed by bytes or bitsto minimize CPU-clock cyclesrequired. If the count in the exponent bits of ct
is larger than the width in bits of the significand field + 3 (for the guard_bit, round_bit and the hidden bit), the
sticky_bit is set and the other bits are cleared, and execution requires one CPU-clock cycle.

35

PTSC IGNITE™ IP Reference Manual

depth

Depth of Stack

Notethat if stack-page exceptions are enabled, atrap might occur and change the state of the stacksfrom that returned.
See Sack-Page Exceptions on page ?.

Idepth (-n) 1001 1011

0x9B

1 CPU-clock

n is exactly the number of cells that can be removed from the local-register stack without causing a local -register
stack cacherefill. (0 0 n O 14).

sdepth (-n) 1001 1111

Ox9F

1 CPU-clock

nisexactly the number of cells, before n was pushed, that could be removed from the operand stack without causing

an operand stack cacherefill. (0 0 n O 14). If n =14, then an operand stack cache spill occurred when n was pushed

and only 13 cellsremain, excluding n, that can be removed from the operand stack without causing an operand stack
cache refill.

di

Disable Interrupts

d (-) 1011 0111
0xB7
1 CPU-clock

Globally disable interrupts, clearing interrupt_en. Theioie bits are not changed.

divu

Divide Unsigned

divu (nln2--n3n4) 1101 1110
OxDE

32 CPU-clocks

Dividethe doublevalue n2nl by the valuein g0 giving the quotient n3 and remainder n4. All valuesare unsigned. If

n2 is greater than or equal to gO then the quotient will overflow. If g0 is zero then n3 equals nl and n4 equals n2.

36

IGNITE™ |P Reference Manual PTSC

el
Enable Interrupts
e (-) 1011 0110
0OxB6
1 CPU-clock

Globally enable interrupts, setting interrupt_en. Theioie bits are not changed.

eqz

Equal Zero
egz (nl--n2) 11100101
OXES5
1 CPU-clock
n2 isthelogical inverse of nl. If nlisequal to zero n2 is-1. If nlisnon-zero n2 is zero.
Equivalent to ANS Forth word O=.
expdif
Exponent Difference
expdif (n1n2--n3n4) 1100 0100
0xC4
1 CPU-clock

Clear the upper half of ct. Subtract the exponent field of n2 from the exponent field in n1 placing the result in the
exponent-field bits of ct. Clear the exponent-field bits and sign bit and set the hidden bit of n1 and n2 giving n3 and
n4, respectively. The locations of the exponent field and hidden bit depend on fp_precision.

extexp
Extract Exponent
extexp (nl--n2) 1101 1011
0xDB
1 CPU-clock

Clear the significand bits of n1 leaving the exponent-field bits and sign bit unchanged, giving n2. The locations of
the exponent field and significand field depend on fp_precision.

37

PTSC IGNITE™ IP Reference Manual

extsig
Extract Significand
extsig (nl--n2) 1101 1100
0xDC
1 CPU-clock

Clear the exponent and sign bits of nl leaving the significand-field bits unchanged. Then set the hidden bit of n1,
giving n2. The locations of the exponent field and significand field depend on fp_precision.

38

IGNITE™ |P Reference Manual

PTSC

frame
Allocate On-Chip Stack Frame
Iframe (n--) 1011 1110
(L:--x0x1) (n>0) OxBE
1 or (1M to 15M) CPU-clocks
(L:%Oxq =) (n<0)
1 or (1 to 15) CPU-clocks
(L:--) (n=0) 1 CPU-clock

If n>0, allocate n uninitialized cells, x,[1xy, at thetop of thelocal-register stack cache. ThiscausesrOto movetorn,
r1to movetor(n+1), ri to moveto r(n+i), etc. Thoselocal registersfor which (n+i) > 14 are written from thelocal -
register stack cache to memory. (10 n O 15).

If n<0, discard On0 cells, x,00%;, fromthetop of thelocal-register stack cache. This causesr0 through r(0On-1) to
bediscarded, rCin0 to becomer0, r(CIn+1) to becomerl, etc. (-15 00 n O -1). Each cell discarded that isnot inthe
stack cache requires one CPU-clock cycle.

If n=0, no cellsare allocated or discarded.

sframe 1011 1111
OxBF
(mn-x0x,mn) (n>0)
1 or (1M to 15M) CPU-clocks
(XOxgmn--mn) (n<0)
1 or (1to 15) CPU-clocks
(n--n) (n=0) 1 CPU-clock

If n>0, alocate n uninitialized cells, x,[0x4, in the operand stack cache after SO and s1. This causes s2 to moveto
s(n+2), s3 to move to s(n+3), si to move to s(n+i), etc. Those stack cellsfor which (n+i) > 16 are written from the
operand stack cache to memory. (1 0 n O 15).

If n <0, discard OnO cells, x,00x;, from within the operand stack cache after sO and s1. This causes s2 through
s([0nd+1) to be discarded, s(C’n0+2) to become 2, s((In(J+3) to become s3, etc. (-15 O n O -1). Each cell
discarded that is not in the stack cache requires one CPU-clock cycle.

If n=0, no cells are allocated or discarded.

39

PTSC IGNITE™ IP Reference Manual

land
Bitwise Invert then AND
iand (n1ln2--n3) clear carry 11101001
OxE9
1 CPU-clock

Clear the bitsin nl that are set in n2 leaving the result n3.

INC
Increment
inc#1 (nl--n2) 1100 1110
OxCE
1 CPU-clock
Add oneto nl giving the sum n2.
Equivalent to ANS Forth word 1+.
inc#4 (nl--n2) 1100 1100
OxCC
1 CPU-clock

Add four to n1 giving the sum n2.

|cache See _cache.

40

IGNITE™ |P Reference Manual PTSC

Id

Load Indirect from Memory

Id [--rO] (--n) 0100 0100

0x44

1+M CPU-clocks

Decrement the addressin rO by four. n isthe value from the cell in memory at the new addressin r0. The two least
significant bits of the address are ignored and treated as zero.

Id [--X] (-n) 0100 1010

Ox4A

1+M CPU-clocks

Decrement the address in x by four. n is the value from the cell in memory at the new addressin x. The two least
significant bits of the address are ignored and treated as zero.

Id [rO++] (-n) 0100 0110

0x46

M CPU-clocks

nisthe value fromthe cell in memory at the addressin r0. Increment rO by four. Thetwo least significant bitsof the
address are ignored and treated as zero.

Id [rQ] (-n) 0100 0010
0x42
M CPU-clocks
n isthe value from the cell in memory at the addressin r0. The two least significant bits of the address are ignored
and treated as zero.

Id [x++4] (-n) 0100 1001

0x49

M CPU-clocks

n isthe value from the cell in memory at the addressin x. Increment x by four. The two least significant bits of the
address are ignored and treated as zero.

Id [X] (-n) 0100 0001
0x41
M CPU-clocks
n isthe value from the cell in memory at the addressin x. The two least significant bits of the address are ignored
and treated as zero.

41

PTSC IGNITE™ IP Reference Manual

Id[] (addr --n) 0100 0000
0x40
M CPU-clocks
nisthevauefrom the cell in memory at the address addr. The two least significant bits of the address are ignored
and treated as zero.

Equivalent to ANS Forth words @, F@, SF@.

Id.b[] (addr -- byte) 0100 1000
0x48
M CPU-clocks

byte is the value from the byte in memory at the address addr.
Id.w [] (‘addr -- word) 0100 1100
0x4C
M CPU_clocks

word isthe 16-bit value from the word in memory at addressaddr. Theleast significant bit of the addressisignored
and treated as zero.

Equivalent to ANS Forth word C@.

ldo

Load Indirect from On-Chip Resource

Ido[] (addr --n) 1001 0110
0x96

1 CPU-clock
nisthevaluefromthe on-chip resource at addr. For valid values of addr, see On-Chip Resource Registers, page 89.

[do.i [] (bit_addr --n) 1001 0111

0x97

1 CPU-clock

nisall ones (-1) if the bit at the on-chip resource address bit_addr is one, otherwise n is zero. For valid values of
bit_addr, see On-Chip Resource Registers, page 89.

ldepth See_depth,

42

IGNITE™ |P Reference Manual PTSC

Iframe See _frame.

mloop

Micro Loop on Condition

An mloop re-executes the current instruction group, beginning with the first instruction in the group, up to the mloop_
instruction, until a specified condition is not met or until ct is decremented to zero. When either termination condition
occurs, execution continues with the instruction following the mloop_ opcode.

mloop () 0011 1000
Micro Loop Unconditionally 0x38
1 CPU-clock

Decrement ct by one. If ct is non-zero transfer execution to the beginning of the current instruction group. If ct is
zero continue execution with the instruction following mloop.

mloopc (--) 0011 1001
Micro Loop if Carry 0x39
1 CPU-clock

Decrement ct by one. If ct isnon-zero and carry is set transfer execution to the beginning of the current instruction
group. If ct iszero or carry is clear continue execution with the instruction following mloopc.

mloopn
mloopnp (n--n) 0011 1010
Micro Loop if Negative/Not Positive Ox3A

1 CPU-clock
Decrement ct by one. If ct is hon-zero and n is negative (neither positive nor zero) transfer execution to the
beginning of the current instruction group. If ct is zero or n is not negative (either positive or zero) continue
execution with the instruction following mloopn or mloopnp.

mloopnc () 0011 1101
Micro Loop if Not Carry 0x3D
1 CPU-clock

Decrement ct by one. If ctisnon-zero and carry isclear transfer execution to the beginning of the current instruction
group. If ctis zero or carry is set continue execution with the instruction following mloopnc.

43

PTSC IGNITE™ IP Reference Manual

mloopnn
mloopp (n--n) 0011 1110
Micro Loop if Not Negative/Positive Ox3E

1 CPU-clock
Decrement ct by one. If ct is non-zero and n is not negative (either positive or zero) transfer execution to the
beginning of the current instruction group. If ct iszero or nisnegative (neither positive nor zero) continue execution
with the instruction following mloopnn or mloopp.

mloopnz (n--n) 0011 1111
Micro Loop if Not Zero Ox3F
1 CPU-clock

Decrement ct by one. If ct isnon-zero and nisnot zero transfer execution to the beginning of the current instruction
group. If ct iszero or n is zero continue execution with the instruction following mloopnz.

mloopz (n--n) 0011 1011
Micro Loop if Zero 0x3B
1 CPU-clock

Decrement ct by one. If ct is non-zero and n is zero transfer execution to the beginning of the current instruction
group. If ct iszero or nis not zero continue execution with the instruction following mloopz.

mulfs

Multiply Fast Signed

mulfs (n1n2--n3n4) 1101 0110
0xD6

2 to 32 CPU-clocks
Multiply the bit-order-reversed value nl by thevaluein g0 leaving theresult n4. n2 isusually zero and n3isgarbage
(see below). The number of significant bitsin nl isindicated by the valuein ct. All values are single-cell size and
signed. ct is decremented to zero.

The program must supply nlin bit-order-reversed form (e.g., the binary valuefor decimal 13is01101 and bit-order
reversed is 10110; notethat the original high-order bit iszero asasign bit and must beincluded.) The program must
also load ct with the bit count and push a zero for n2. For the example number above, the count would be 5. n3is
typically discarded.

n2 could be non-zero but its use in this form is questionable. The effect of n2 on the result is that the value of n2
shifted left by the bit count valuein ct isadded to theresult, n4. n3 containsthe low cell of the value remaining after
n2nlisshifted right by the number of bitsin ct. Instruction execution timeislimited to 65 CPU-clock cycles by the
instruction expiration counter.

IGNITE™ |P Reference Manual PTSC

muls

Multiply Signed

muls (nln2--n3n4) 1101 0101
0xD5
32 CPU-clocks

Multiply n1 by the value in g0 and add n2, leaving the double result n4n3. All values are signed.

mulu

Multiply Unsigned

mulu (n1n2--n3n4) 1101 0111
0xD7

32 CPU-clocks
Multiply n1 by the value in g0 and add n2, leaving the double result n4n3. All values are unsigned.

mxXm

Maximum

mxm (n1n2--n1n2) carry set 1101 1111
or (nln2--n2nl) carry clear OxDF

2 CPU-clocks
Compare n2 and nl assigned values. Set carry if n1 < n2, otherwise clear carry. Bring the larger of nl1 and n2 to the
top of stack. That is, if the resulting carry is set then n2 is greater than n1 and n2 remains on top. If the resulting
carry is clear then n2 isless than or equal to n1 and nl is exchanged with n2.

neg

Two's-Complement Negation

neg(nl--n2) 1100 1001
0xC9
1 CPU-clock

n2 is the two's-complement negation of nl.

Equivalent to Java byte code ineg.

Equivalent to ANS Forth word NEGATE.

45

PTSC IGNITE™ IP Reference Manual

nop
No Operation
nop(--) 1110 1010
OXEA
1 CPU-clock
Do nothing.
Equivalent to Java byte code nop.
norml
Normalize Left
norml (nl--n2) if singleprecision 1100 0111
(nln2--n3n4) if doubleprecision oxC7

1to 13 CPU-clocks
(L:--addr) onlywhen trap processed
3+M to 15+M CPU-clocks
(L:--addrladdr2) only when both traps processed
5+2M to 17+2M CPU-clocks
While the hidden bit and the seven bitsto the right of it in n1 (n2 if double) are zero, repeat the following:
Shift nl (or n2nl if double) left by eight bits and decrement the exponent field in ct by eight.
Then, while the hidden bit of n1 (n2 if double) is zero, repeat the following:
Shift nl (or n2nl if double) left by one bit and decrement the exponent field in ct by one.

In both steps, bits shifted into bit zero of n1 come from the GRS extension.

When the operation is complete, if shifting was required and the decremented field in ct reached or passed al zero
bits during the processing, an underflow exception is signaled. If no shifting is required an underflow exceptionis
not signaled. Then, if any bit in the GRS extension is set, a normalize exception is signaled. The location of the
exponent field depends on fp_precision. If both traps are processed, the underflow trap has higher priority.
Instruction execution time is limited to 65 CPU-clock cycles by the instruction expiration counter.

46

IGNITE™ |P Reference Manual PTSC

normr

Normalize Right

normr (nl--n2) if singleprecision 1100 0110
(nln2--n3n4) if doubleprecision 0xC6

1 to 11 CPU-clocks
(L:--addr) onlywhen trap processed
3+M to 13+M CPU-clocks
(L:--addrladdr2) only when hoth traps processed
5+2M to 15+2M CPU-clocks
While any bit except the first bit (the hidden bit) in the exponent field is non-zero, repeat the following:
Shift n1 (or n2n1 if double) right by one bit and increment the exponent field in ct by one. Bits shifted out of bit
zero of nl shift into the GRS extension hits.

When the operation is complete, if shifting was required and the incremented field in ct reached or passed al one
bits during the processing, an overflow exceptionissignaled. If no shifting isrequired an overflow exceptionisnot
signaled. Then, if the GRS extension is set, anormalization exception issignaled. Thelocations of the exponent field
and hidden bit depend on fp_precision. If both traps are processed, the overflow trap has higher priority.

notc

Complement Carry

notc () carry inverted 1101 1101
0xDD
1 CPU-clock

Invert the state of carry.

47

PTSC IGNITE™ IP Reference Manual

or

Bitwise OR

or (nln2--n3) carry clear

Perform a bitwise OR on nl and n2 giving the result n3.
Equivalent to Java byte codeior.

Equivaent to ANS Forth word OR.

Pop

pop(n--)

Discard n.

Equivalent to Java byte codes pop, 12i.
Equivalent when executed twice to Java byte code pop2.

Equivalent to ANS Forth word D>S, DROP, FDROP.
Equivalent when executed twice to ANS Forth word 2DROP.

pop ct (n-)

Replace the value in ct with n.

pop g (n--)

Replace the value in gi (global register i, i.e., g0—g15) with n.

pop la (addr --)
(L: EIjnDjl “)

1110 0000
OxEO
1 CPU-clock

1011 0011
0xB3
1 CPU-clock

1011 0100
OxB4
1 CPU-clock

0101 xxxx
0x5?
1 CPU-clock

1011 1101
0xBD

1+M CPU-clocks

Replace the value in lawith cell-aligned address addr. The contents of the local-register stack cache, 0j,j4, are
discarded. Thetwo least-significant bitsof laare cleared. Thebit Is_boundary iscleared. A stack refill is performed

at addr+4 to initialize rO.

pop Istack (n--)
(L:--n)
48

1011 1010
OxBA

IGNITE™ |P Reference Manual PTSC

1 CPU-clock
Remove n from the operand stack and push it onto the local-register stack (into r0). The previous contents of rO are
placed in r1, the previous contents of r1 are placed in r2, and so on.

Equivalent to ANS Forth word >R.
Equivalent when executed twice to ANS Forth word 2>R.

pop mode (n--) 1011 1001
0xB9
1 CPU-clock
Replacethe valuein mode with n and clear power_fail. The mode bitspower_fail, Is_boundary and os_boundary are
not writeable.

pop ri (n--) 1010 xxxx
OxA?
1 CPU-clock

Replacethe valueinri (local register i, i.e., rO—r14) with n.

If ri isinthelocal-register stack cache (i O Idepth) thevalueinri isreplaced with n. If ri isnot currently inthelocal-
register stack cache (i > ldepth), cellsstarting at r(Idepth+1) are read from memory sequentialy tofill the cache until
ri isreached. ri isthen replaced with the value n.

Equivalent to Javabyte codesastore 0, astore 1, astore 2, astore 3, fstore 0, fstore 1, fstore 2, fstore 3, istore 0,
istore 1, istore 2, istore 3.

Equivalent when executed twice to Java byte codes dstore O, dstore 1, dstore 2, dstore 3, Istore O, Istore 1,
Istore 2, Istore 3.

Equivalent for indexes up to fourteen (almost all actual cases) to Java byte codes astore (vindex), fstore (vindex),
istore (vindex).

Equivalent when executed twice for indexes up to thirteen (almost all actual cases) to Java byte codes dstore
(vindex), Istore (vindex).

pop sa (Ojy0j; ml m2 addr -- m1 m2) 1011 1100
0xBC
1+M CPU-clocks
Replace the value in sa with cell-aligned address addr. The contents of the operand stack cache, Oj,0j,, are
discarded. Thetwo least-significant bitsof saarecleared. Thebit os_boundary iscleared. A stack refill isperformed

at addr+4 to initialize s2.

pop X (n--) 1011 1000
0xB8
1 CPU-clock

Replace the value in x with n.

49

PTSC IGNITE™ IP Reference Manual

push

push (n--nn) 1001 0010
0x92
1 CPU-clock

Duplicate n.

Equivalent to Java byte code dup.

push ct (--n) 1001 0100
0x9%4
1 CPU-clock
nisthevalueinct.

push gi (-n) 0111 xxxx
0x7?
1 CPU-clock

nisthevaluein gi (global register i, i.e., g0—g15).
push la (--addr) 1001 1101
0x9D
1 CPU-clock

addr isthevalueinla. Notethat if stack-page exceptionsare enabled, atrap might occur and change the state of the
stacks from that returned. See Stack-Page Exceptions on page 2.

push Istack (-n) 1001 1010
O0x9A
(L:n--) 1 CPU-clock

Pop n from the local-register stack (from r0) and push it onto the operand stack. The previous contents of r1 are
placed in r0, the previous contents of r2 are placed in r1, and so on.

Equivalent to ANS Forth word R>.
Equivalent when executed twice to ANS Forth word 2R>.

push mode (-n) 1001 0001
0x91
1 CPU-clock

nisthe vauein mode.

50

IGNITE™ |P Reference Manual PTSC

push ri (--n) 1000 xxxx
0x8?
1 CPU-clock

nisthevalueinri (local register i, i.e. r0—14).

If ri isin the local-register stack cache (i O Idepth) the value in ri is pushed onto the operand stack. If ri is not
currently inthelocal-register stack cache (i > Idepth), cells starting at r(Idepth+1) areread from memory sequentially
until ri isreached. The valueinri isthen pushed onto the operand stack.

Equivalent to Java byte codes aload 0, aload 1, aload 2, aload_3, fload O, fload_1, fload 2, fload 3, iload 0,
iload_1, iload 2, iload_3.

Equivalent when executed twice to Javabyte codeslload 0, lload 1, lload_2, lload_3, dload_0, dload 1, dload 2,
dload_3.

Equivalent for indexes up to fourteen (almost al actual cases) to Java byte codes aload (vindex), fload (vindex),
iload (vindex).

Equivalent when executed twice for indexes up to thirteen (almost al actual cases) to Java byte codes dload
(vindex), lload (vindex).

Equivalent to ANS Forth word R@.
Equivalent when executed twice to ANS Forth word 2R@.

push s (-n) s0 1001 0010
0x92
sl 1001 0011
0x93
s2 1001 1110
Ox9E
1 CPU-clock
nisthevalueins (operand stack register i, i.e., S0, sl or s2)

Equivalent to Java byte code dup.
Equivalent when executed twice to Java byte code dup?2.

Equivalent to ANS Forth words 2DUP, DUP, FDUP, FOVER, OVER.

push sa (--addr) 1001 1100

0x9C

1 CPU-clock

addr isthevaluein sa. Notethat if stack-page exceptions are enabled, atrap might occur and change the state of the
stacks from that returned. See Stack-Page Exceptions on page ?.

push x (-n) 1001 1000
0x98
1 CPU-clock

nisthevaueinx.

51

PTSC IGNITE™ IP Reference Manual

push.b #n (--n) 1001 0000

0x90

1 CPU-clock

nisan eight-bit literal valuein the range 0—255. The byteliteral isencoded asthelast bytein theinstruction group.

Thisallowsonly one unique push.b # val ue per instruction group. Multiple push.b # opcodesin the sameinstruction
group push the same value.

Equivalent for positive values to Java byte code bipush.
Equivalent for some valuesto Java byte code sipush.

push.| #n (-n) 0100 1111

Ox4F

M CPU-clocks

nisa32-hit literal value. Thevalueiscompiled asafull cell following theinstruction group. Multiple push.l #inan

instruction group are compiled with datain sequential cellsfollowing theinstruction group in memory. Asthepush.|

opcodes are executed, theinternally maintained next pc isincremented to move past each cell asit isfetched and

pushed on the stack. Note that skipping a push.| # causes the CPU to execute the literal value because the skipped
push.l # will not have incremented next pc to move past the value.

Equivalent to Java byte code fconst_1, fconst_2, Idc, Idc_w, sipush.
Equivalent when executed twice to Java byte code ldc2_w.

push.n #n (-n) 0010 xxxx
0x27?
1 CPU-clock
nisaliteral valueintherange-7to 8. Thefour least-significant bits of the opcode encode the valuefor n. The value
is encoded as a two's-complement representation of n except that -8 (1000 binary) is decoded to be +8.

Equivalent to Java byte codes aconst_null, fconst_0, iconst_m1, iconst_0, iconst_1, iconst_2, iconst_3, iconst_4,
iconst_5.

Equivalent for some values to Java byte code bipush.

Equivalent when executed twice to Java byte codes dconst_0, Iconst_0, Iconst_1.

Equivalent to ANS Forth words FALSE, TRUE.

52

IGNITE™ |P Reference Manual PTSC

replb

Replace Byte
replb (nln2--n3) 1101 1010
OxDA
1 CPU-clock

Replacethetarget byte of n2 with the least-significant byte of n1, leaving theresult n3. Thetarget byteisselected by
the two least-significant bits of x, as when accessing a byte in memory.

For example, if x = 0x121, n1 = OXCCDDEEFF, and n2 = 0x12345678, then n3 = Ox12FF5678.

replw

Replace Word
replw (n1n2--n3) 11101011
OxEB
1 CPU-clock

Replace the target 16-bit word of n2 with the least-significant word of n1, leaving the result n3. The target word is
selected by the next-to-least-significant bit of x, aswhen accessing aword in memory. Theleast-significant bit of X is
ignored.

For example, if x = 0x121, n1 = OXCCDDEEFF, and n2 = 0x12345678, then n3 = OXEEFF5678.

replexp

Replace Exponent
replexp (n1n2--n3) 1011 0101
0xB5
1 CPU-clock

Replace the exponent field and sign bits of nl with the corresponding bits of n2. Clear the GRS extension. The
location of the exponent field depends on fp_precision.

53

PTSC IGNITE™ IP Reference Manual

I et

Return

ret (--) 0110 1110
(L:addr --) OX6E

Return from Subroutine M CPU-clocks

Pop addr from the local-register stack into pc to transfer execution to addr.

Equivalent to ANS Forth word EXIT.

reti (--) 0110 1111
(L:addr --) OX6F
Return from Interrupt M CPU-clocks

Pop addr from thelocal-register stack into pc to transfer execution to addr. Clear the current interrupt under-service
bit.

Fev
Revolve Operand Stack
rev (nln2n3--n2n3nl) 1110 0100
OxE4
1 CPU-clock

Rotate the top three cells of the stack to bring nl to the top.

Equivalent to the run-time for the ANS Forth words FROT, ROT.

54

IGNITE™ |P Reference Manual PTSC

rnd
Round
rnd (nl1--n2) carry+ 1101 0001
0xD1
1 CPU-clock
(L:--addr) onlywhen trap processed 3+M CPU-clocks

Round n1 giving n2. Rounding is based on fp_round_mode, the sign of ct, and the GRS extension. See Rounding,
page 24. If an increment carried out of bit 31 then set carry, clear carry otherwise.

If the value of n2 isdifferent fromnl, arounded exceptionissignaled. The exception is detected asachangein the
value of bit zero.

scache See _cache.

sdepth See _depth.

sexb
Sign-extend byte
sexb (nl--n2) 1101 1000
0xD8
1 CPU-clock

Copy the value of bit seven of nl into bits eight to thirty-one, leaving n2.

55

PTSC IGNITE™ IP Reference Manual

SEXW
Sign-extend word
Sexw (nl--n2) 1001 0101
0x95
1 CPU-clock

Copy the value of bit fifteen of nl into bits sixteen to thirty-one, leaving n2

Equivaent to Java byte code i2b.

shift

The number of CPU-clock cyclesrequired to shift the specified number of bits depends on the number of bitsregquested.
Whilethe count [eight the value (single or double) is shifted eight bits each CPU-clock cycle. When the count becomes
lessthan eight the shifting is finished at one bit per CPU-clock cycle. For instance, the worst-case useful shift is 31 bits
(either left or right) and takes eleven CPU-clock cycles—three 8-bit shifts and seven 1-bit shifts plus one CPU-clock
cycle for setup. A 32-bit shift would take five CPU-clock cycles. The counts are modulo 64 in sign-magnitude
representation using only the six least-significant bits for the magnitude and bit 31 for the sign. A zero in the six least-
significant bits represents zero. (Sign-magnitude representation hereis apositive integer count inthe six least-significant
bits, the middle bitsignored, and bit 31 indicating the sign, zero is positive, oneis negative).

shift (nln2--n3) carry+ (n2>0) 1110 1110

OXEE

1 to 11 CPU-clocks

Shift n1 by [0n20 bits leaving the result n3. If n2 is positive the shift isto the left, each bit is shifted out through

carry, and zero is shifted into each bit on the right. If n2 is negative the shift is to the right, each bit shifted out is

shifted through the GRS extension, and carry is copied into each high order bit of n1 vacated by the shift. Seetext
above regarding execution time and format of negative counts.

Equivalent to ANS Forth word LSHIFT.

shiftd (n1ln2n3--n4n5) carryx (n3>0) 1110 1111
Shift Double OXEF
1to 15 CPU-clocks
Shift the cell pair n2nl by On30 bitsleaving the resulting cell pair n5n4. If n3 is positive the shift isto theleft, each
bit isshifted out of n2 through carry, and zero is shifted into each bit ontheright into n1. If n3isnegativethe shiftis
to theright, each bit shifted out of nlis shifted through the GRS extension, and carry is copied into each high order

bit of n2 vacated by the shift. See text above regarding execution time and format of negative counts.

56

IGNITE™ |P Reference Manual PTSC

shl_

Shift Left
shl #1 (nl1--n2) carry+ 11100010
Shift Left OxE2

1 CPU-clock
Shift n1 one hit to the left leaving the result n2. The high order bit of n1 shifted out goesinto carry. The vacated bit
on theright of nlisfilled with zero.

Equivalent to ANS Forth word 2*.

shl #8 (nl--n2) carry+ 1110 1100
Shift Left Byte OXEC
1 CPU-clock

Shift n1 eight bits (one byte) to the left leaving n2. Thelast bit shifted out goesinto carry. The vacated eight bitson
theright are filled with zeros.

shid #1 (n1n2--n3n4) carry+ 1110 0110
Shift Left Double OXE6
1 CPU-clock

Shift cell pair n2nl one bit to the left leaving the result n4n3. The high order bit of n2 shifted out goesinto carry.
The vacated bit on the right of n1 isfilled with zero.

Equivalent to ANS Forth word D2*.

57

PTSC IGNITE™ IP Reference Manual

shr__

Shift Right
shr #1 (nl--n2) 1110 0011
Shift Right OXE3

1 CPU-clock
Shift n1 one bit to the right leaving the result n2. The bit shifted out is shifted into the GRS extension. The vacated
bit on the left isfilled with carry.

shr #8 (nl1--n2) 1110 1101
Shift Right Byte OxED
1 CPU-clock

Shift n1 eight bits (one byte) to the right leaving the result n2. The bits shifted out are shifted into the GRS
extension. The vacated eight bits on the left are filled with carry.

shrd #1 (nln2--n3n4) 11100111
Shift Right Double OxE7
1 CPU-clock

Shift cell pair n2n1 one bit to the right leaving the result n4n3. The bit shifted out of nl is shifted into the GRS
extension. The vacated bit in n2 on the left isfilled with carry.

58

IGNITE™ |P Reference Manual PTSC

sKip
Skip if Condition

skip conditionally or unconditionally skips execution of the remainder of the instruction group. If the condition is
true, skip the remainder of the instruction group and continue execution with the following instruction group. If
condition is false, continue execution with the next instruction.

WARNING: Do not skip a push.| #. Since the CPU will not have executed the push.| # opcode, the corresponding
literal cell isnot skipped. The result will be the CPU executing the literal cell.

skip (--) 0011 0000
Skip Unconditionally 0x30
Mprefetch CPU-clocks

Unconditionally skip the remainder of the instruction group.

skipc () 0011 0011

Skip if Carry 0x31

1 (no carry) Mprefetch (carry) CPU-clocks

If carry is set, skip the remainder of the instruction group and continue execution with the next instruction group;
otherwise, continue execution with the next instruction.

skipn
skipnp (n--) 0011 0010
Skip if Negative/Not Positive 0x32

1 (not neg) Mprefetch (neg) CPU-clocks
If nisnegative (neither positive nor zero), skip the remainder of theinstruction group and continue execution with
the next instruction group; otherwise, continue execution with the next instruction.

skipnc (--) 0011 0111

Skip if Not Carry 0x35

1 (carry) Mprefetch (no carry) CPU-clocks

If carry isclear, skip the remainder of theinstruction group and continue execution with the next instruction group;
otherwise, continue execution with the next instruction.

skipnn
skipp (n--) 0011 0110
Skip if Not Negative/Positive 0x36

1 (neg) Mprefetch (not neg) CPU-clocks
If nisnot negative (either positive or zero), skip the remainder of the instruction group and continue execution with
the next instruction group; otherwise, continue execution with the next instruction.

skipnz (n--) 0011 0001
Skip if Not Zero 0x37
1 (zero) Mprefetch (non-zero) CPU-clocks

59

PTSC IGNITE™ IP Reference Manual

If nisnot zero, skip the remainder of theinstruction group and continue execution with the next instruction group;
otherwise, continue execution with the next instruction.

skipz (n--) 0011 0101
Skip if Zero 0x33

1 (non-zero) Mprefetch (zero) CPU-clocks

If nis zero, skip the remainder of the instruction group and continue execution with the next instruction group;
otherwise, continue execution with the next instruction.

split

Split Cell
split (nl--n2n3) 1001 1001
0x99
1 CPU-clock

Split n1into two parts so that the lower-half of n1 isin thelower-half of n2 and the upper-half of n1isinthelower-
half of n3.

For example, if n1 = 0x12345678 then n2 = 0x5678 and n3 = 0x1234.

60

IGNITE™ |P Reference Manual PTSC

st

Store Indirect to Memory

st [--rQ] (n--) 0110 0100

0x64

1+M CPU-clocks

Decrement rO by four. Store the cell ninto memory at the new addressin r0. The two least-significant bits of the
address are ignored and treated as zero.

st [--X] (n--) 0110 1000

0x68

1+M CPU-clocks

Decrement x by four. Store the cell n into memory at the new address in x. The two least-significant bits of the
address are ignored and treated as zero.

st [r0++] (n--) 0110 0110

0x66

M CPU-clocks

Store the cell n into memory at the addressin rO. Increment rO by four. The two least-significant bits of the address
areignored and treated as zero.

st [rO] (n--) 0110 0010
0x62
M CPU-clocks
Storethe cell ninto memory at the addressin r0. The two least-significant bits of the address are ignored and treated
as zero.
st [X++] (n--) 0110 1001
0x69
M CPU-clocks
Storethe cell ninto memory at the addressin x. Increment x by four. Thetwo least-significant bits of the addressare
ignored and treated as zero.
st [X] (n--) 0110 0001
0x61
M CPU-clocks
Storethe cell ninto memory at the addressin x. Thetwo least-significant bits of the address areignored and treated
as zero.
st[](naddr--n) 0110 0000
0x60
M CPU-clocks
Storethe cell ninto memory at address addr. The two |east-significant bits of the addressareignored and treated as
zero.

61

PTSC IGNITE™ IP Reference Manual

step

Single-Step Processor

step(--) 0011 0100
(L:addrl-- addr2) 0x34

2M+2+inst CPU-clocks

Pop addr1 fromthelocal-register stack into pc and continue execution at addr 1 for oneinstruction. Then performa

call subroutine to the single-step trap location, 0x138. addr2 isthe address of the next instruction following addr 1.

sto

Store Indirect to On-Chip Resource

sto [] (naddr --n) 1011 0000

0xBO

1 CPU-clock

Store ninto the on-chip resourceregister at addressaddr. The programmer must ensurethat sto [] isnot executed to

access (even if not changed) any configuration register containing information for a memory group with a bus
transaction in process. For valid values of addr, see On-Chip Resource Registers, page 89.

sto.i [] (nbit_addr --n) 1011 0001
0xB1
1 CPU-clock
If nisnon-zero, set the bit at the on-chip resource register addressbit_addr; otherwise, clear thebit. For valid values
of addr, see On-Chip Resource Registers, page 89.

62

IGNITE™ |P Reference Manual PTSC

sub
Subtract
sub (nln2--n3) carry+ 1100 1000
0xC8
1 CPU-clock

Subtract n2 fromnl leaving the difference n3. If computing the difference required aborrow, carry is set; otherwise,
carry is cleared.

Equivaent to Java byte code isub.

Equivaent to ANS Forth word -.

subb

Subtract with Borrow

subb (n1n2--n3) carry+ 1100 1010

OxCA

1 CPU-clock

Subtract n2 and carry from n1 leaving the difference n3. If computing the difference required aborrow, carry isset;
otherwise, carry is cleared.

subexp
Subtract Exponents
subexp (nln2--n3n4n5) 1101 0011
0xD3
2 CPU-clocks
(L:--addr) onlywhen trap processed 4+M CPU-clocks

Perform the following:

Exponent_Field(n5) = Exponent_Field(nl) - Exponent_Field(n2) + BIAS- 1

Sign_Bit(n5) = Sign_Bit(n1) XOR Sign_Bit(n2)
BIASis 127 (0x3F800000 in bit position) for single precision and 1023 (0x3FFO0000 in bit position) for double
precision, as selected by fp_precision.

Compute as described above. Clear the exponent-field bitsand sign bit and set the hidden bit of n1 and n2 givingn3
and n4, respectively. n5 is the result of the computation. After completion, if the exponent-field calculation result
equaled or exceeded the maximum val ue of the exponent field (exponent result O 255 for single, exponent result [
2047 for double) an overflow exception is signaled. If the exponent-field calculation result isless than or equal to
zero an underflow exception is signaled. When an exception is signaled, the exponent field of n5 contains as low-
order many bits of the result as it will hold.

63

PTSC IGNITE™ IP Reference Manual

Test Bytesfor Zero
testb (n--n) carry+ 1101 1001
0xD9
1 CPU-clock

If any byte of nis zero set carry, otherwise clear carry.

testexp
Test Exponent

testexp (n1n2--n1n2) carry+ 1101 0100

0xD4

1 CPU-clock

(L:--addr) onlywhen trap processed 3+M CPU-clocks

Clear the GRS extension. If the exponent field in n1 or n2 isall zeros or all ones, an exponent exceptionissignaled and
carry is set; otherwise, carry is cleared. The location of the exponent field depends on fp_precision.

XCg
Exchange
xcg(nln2--n2nl) 1011 0010
0xB2
1 CPU-clock

Exchange the top two operand stack cells.
Equivalent to Java byte code swap.

Equivaent to the ANS Forth words FSWAP, SWAP.

64

IGNITE™ |P Reference Manual PTSC

XOr
Bitwise Exclusive OR
xor (nln2--n3) carry clear 1100 0011
OxC3
1 CPU-clock

Perform a bitwise EXCLUSIVE OR of nl and n2 giving the result n3.

Equivaent to Java byte code ixor.

Equivalent to ANS Forth word XOR.

65

PTSC

IGNITE™ |P Reference Manual

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode
add pc bb mul s d5 push g3 73 push.n #7 27
add c0 mul u d7 push g4 74 push.n #8 28
adda e8 mm df push g5 75 replb da
addc c2 neg c9 push g6 76 repl exp b5
addexp d2 nop ea push g7 77 replw eb
and el nor mi c7 push g8 78 ret 6e
bkpt 3c nor nr c6 push g9 79 reti 6f
br of f set 00..07 | notc dd push g10 7a rev e4
br [1 4b or e0 push gl1 7b pnd di
bz of f set 10..17 | pop b3 push gl2 7c scache 45
cal | of f set 08..0f | pop ct b4 push g13 7d sdept h of
cal | [1 4e pop g0 50 push gla 7e sexb ds
cnp cb pop gl 51 push g15 7f sexw 95
copyb do pop g2 52 push node 91 sframe bf
dbr of f set 18..1f | pop g3 53 push la 9d shift ee
dec ct, #1 cl pop g4 54 push | stack 9a shiftd ef
dec #4 cd pop g5 55 push ro 80 shl #1 e2
dec #1 cf pop g6 56 push ri 81 shl #8 ec
denorm c5 pop g7 57 push r2 82 shl d #1 e6
di b7 pop g8 58 push r3 83 shr #1 e3
divu de pop g9 59 push r4 84 shr #8 ed
ei b6 pop g10 5a push r5 85 shrd #1 e7
eqz e5 pop gl1l 5b push ré 86 ski p 30
expdi f c4 pop gl2 5¢ push r7 87 ski pc 31
ext exp db pop g13 5d push r8 88 ski pn 32
extsig dc pop gla 5e push r9 89 ski pnc 35
i and e9 pop gl5 5f push r1o 8a ski pnn 36
inc #4 cc pop la bd push ril 8b ski pnp 32
inc #1 ce pop | stack ba push ri2 8c ski pnz 37
| cache 4d pop node b9 push ri3 8d ski pp 36
I d [1 40 pop ro a0 push ri4 8e ski pz 33
Id [x] 41 pop rl al push s0 92 split 99
I d [rO] 42 pop r2 a2 push sl 93 st [1 60
Id [--rQ] 44 pop r3 a3 push s2 9e st [X] 61
I d [rO++] 46 pop ra a4 push sa 9c st [rO] 62
Id [x++] 49 pop r5 a5 push X 98 st [--r0] 64
Id [--x] 4a pop r6é a6 push. b # byte 90 st [rO++4] 66
Id.b [] 48 pop r7 a7 push. | # cell 4f st [--x] 68
Id.w [1 4c pop r8 a8 push.n #-7 29 st [x++] 69
| dept h 9b pop r9 a9 push.n #-6 2a step 34
I do [1 96 pop rio0 aa push.n #-5 2b sto [1 b0
I do.i [] 97 pop ri1 ab push.n #-4 2c sto.i [1 bl
| frame be pop ri2 ac push.n #-3 2d sub c8
m oop 38 pop ri3 ad push.n #-2 2e subb ca
m oopc 39 pop ria ae push.n #-1 2f subexp d3
m oopn 3a pop sa bc push.n #0 20 testb d9
m oopnc 3d pop X b8 push.n #1 21 testexp d4
m oopnn 3e push 92 push.n #2 22 xcg b2
m oopnz 3f push ct 94 push.n #3 23 xor c3
m oopp 3e push g0 70 push.n #4 24

m oopz 3b push gl 71 push.n #5 25

mul fs dé push g2 72 push.n #6 26

Table 35 CPU M nemonics and Opcodes (M nemonic Order)

66

IGNITE™ |P Reference Manual

PTSC

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic
00..07 br of f set 53 pop g3 8d push ri3 c7 nor m

08..0f cal | of f set 54 pop g4 8e push ria c8 sub

10..17 bz of f set 55 pop g5 8f c9 neg

18..1f dbr of f set 56 pop g6 90 push.b # byte ca subb

20 push.n #0 57 pop g7 91 push node cb cnp

21 push.n #1 58 pop g8 92 push s0O cc inc #4
22 push.n #2 59 pop g9 93 push sl cd dec #4
23 push.n #3 5a pop gl0 94 push ct ce inc #1
24 push.n #4 5b pop gl1l 95 sexw cf dec #1
25 push.n #5 5¢ pop gl2 96 |do [1 do copyb

26 push.n #6 5d pop g13 97 ldo.i [1 dl rnd

27 push.n #7 5e pop gla 98 push X d2 addexp

28 push.n #8 5f pop g15 99 split d3 subexp

29 push.n #-7 60 st [1 9a push | stack d4 test exp

2a push.n #-6 61 st [X] 9b Idepth d5 mul s

2b push.n #-5 62 st [rO] 9c push sa dé mul fs

2c push.n #-4 63 9d push la d7 mul u

2d push.n #-3 64 st [--r0] 9e push s2 ds sexb

2e push.n #-2 65 9f sdepth d9 testb

2f push.n #-1 66 st [rO++] a0 pop ro da replb

30 skip 67 al pop ri db ext exp

31 ski pc 68 st [--x] a2 pop r2 dc extsig

32 ski pn 69 st [x++] a3 pop r3 dd not c

32 ski pnp 6a a4 pop rd de di vu

33 ski pz 6b a5 pop r5 df nmxm

34 step 6¢C a6 pop ré e0 or

35 ski pnc 6d a7 pop r7 el and

36 ski pnn 6e ret a8 pop r8 e2 shl #1
36 ski pp 6f reti a9 pop r9 e3 shr #1
37 ski pnz 70 push g0 aa pop r10 e4 rev

38 m oop 71 push gl ab pop ril e5 eqz

39 m oopc 72 push g2 ac pop ri2 e6 shid #1
3a m oopn 73 push g3 ad pop ri3 e7 shrd #1
3b m oopz 74 push g4 ae pop ria e8 adda

3c bkpt 75 push g5 af e9 i and

3d m oopnc 76 push g6 b0 sto [1 ea nop

3e m oopnn 77 push g7 bl sto.i [1 eb replw

3e m ooppp 78 push g8 b2 xcg ec shl #8
3f m oopnz 79 push g9 b3 pop ed shr #8
40 I d [1 7a push g10 b4 pop ct ee shift

41 Id [x] 7b push gl1 b5 repl exp ef shiftd

42 Id [rO] 7c push gl2 b6 ei fo

43 7d push g13 b7 di f1

44 Id [--r0] 7e push gl4 b8 pop X f2

45 scache 7f push g15 b9 pop node f3

46 I d [rO++] 80 push ro ba pop I stack fa

47 81 push rl bb add pc f5

48 Id. b [1 82 push r2 bc pop sa fé

49 I d [x++] 83 push r3 bd pop la f7

4a Id [--x] 84 push ra be Iframe f8

4b br [1 85 push r5 bf sfranme fo

4c Id.w [1 86 push ré cO add fa

4d | cache 87 push r7 cl dec ct, #1 fb

4e cal | [1 88 push r8 c2 addc fc

4f push. | # cell 89 push r9 c3 xor fd

50 pop g0 8a push rio0 c4 expdif fe

51 pop gl 8b push ri1 c5 denorm ff

52 pop g2 8c push rl2 c6 nornr

Table 36 CPU M nemonics and Opcodes (Opcode Order)

67

PTSC

IGNITE™|P Reference Manual

Interrupt Controller

The Interrupt Controller (INTC) alows multiple
requeststo gain, in an orderly and prioritized manner, the
attention of the CPU. The INTC supports up to eight
prioritized interrupt requests. I nterrupts are received from
the bit inputs through ioin.

Resources

The INTC consists of several registers and associated
control logic. Interrupt zero, which correspondsto bit zero
of the registers, has the highest priority; interrupt seven,
which corresponds to bit seven of the registers, has the
lowest priority. The INTC and related registers include:

* Bit input register, ioin: bit inputs configured as
interrupt requests or general bit inputs. See Figure 11.

e Interrupt pending register, ioip: indicates which
interrupts have been recognized, but are waiting to be
prioritized and serviced. See Figure 12.

* Interrupt under serviceregister, ioius: indicateswhich
interrupts are currently being serviced. See Figure 13.

* Interrupt enable register, ioie: indicates which ioin
bits are to be recognized as interrupt requests. See Figure
15.

Thebit inputs are low true used asinterrupt requests or as
directly readable bit inputs. Interrupt progress status is
read aslow trueinioin and ashightrueinioie and ioius.

Operation

Aninterrupt request can arrivefromazerobitinioin,
typicaly from an external input low, or from the CPU
writing the bit low. I nterrupt request zero comesfromioin
bit zero; interrupt request one comes fromioin bit one, the
other interrupt requests are similarly assigned.

Associated with each of the eight interrupt requestsis
an interrupt service routine (1 SR) executable-code vector
located in memory. See Figure 3. A single | SR executable-
code vector for a given interrupt request is used for al
reguests on that interrupt. It is programmed to contain
executable code, typically abranch to the ISR.

Interrupt Request Servicing

68

When an interrupt request occurs, the corresponding
bit in ioip is set, and the interrupt request is now a
pending interrupt. Pending interruptsare prioritized each
CPU-clock cycle. Theinterrupt_en bit in mode holds the
current global interrupt enable state. It can be set with the
CPU enable-interrupt instruction, ei; cleared with the
disable-interrupt instruction, di; or changed by modifying
mode. Globally disabling interrupts allows al interrupt
requeststo reach ioip, but preventsthe pending interrupts
inioip from being serviced.

When interrupts are enabled, interrupts are
recognized by the CPU between instruction groups, just
before the execution of the first instruction in the group.
This alows short, atomic, uninterruptable instruction
sequences to be written easily without having to save,
restore, and manipulate the interrupt state. The stack
architecture alows interrupt service routines to be
executed without requiring registersto be explicitly saved,
and the stack caches minimize the memory accesses
required when making additional register resources
available.

If interrupts are globally enabled and the highest-
priority ioip bit has a higher priority than the highest-
priority ioius bit, the highest-priority ioip bit is cleared,
the corresponding ioius bit is set, and the CPU is
interrupted just before the next execution of the first
instruction in an instruction group. Thisneststheinterrupt
servicing, and the pending interrupt is now the current
interrupt under service. Theioip bits are not considered
for interrupt servicing while interrupts are globally
disabled, or while none of the ioip bits has a higher
priority than the highest-priority ioius bit.

Unless software modifiesioius, the current interrupt
under serviceis represented by the highest-priority ioius
bit currently set. reti isused at the end of | SRsto clear the
highest-priority ioius bit that is set and to return to the
interrupted program. If the interrupted program was a
lower-priority interrupt service routine, this effectively
“unnests’ the interrupt servicing.

Recognizing Interrupts

An ioin bit is configured to recognize an interrupt
request source if the corresponding ioie bit is set. Once a
zeroreachesioin, itisavailableto request aninterrupt. An
interrupt request is forced in software by clearing the
corresponding ioin bit or by setting the corresponding ioip
bit. Individually disabling aninterrupt request by clearing

IGNITE™ |P Reference Manual

itsioie bit prevents a corresponding zero bit inioin from
being recognized.

While aninterrupt request isbeing processed, until its
ISR terminates by executing reti, the corresponding ioin
bit is not zero-persistent and follows the sampled level of
the external input pin. Specifically, for a given interrupt
request, whileitsioiebit is set, and itsioip bit or ioius bit
isset, itsioin bit is not zero-persistent. This effect can be
used to disable zero-persistent behavior on non-
interrupting bits. See Zero Persistent

ISR Processing

When an interrupt request isrecognized by the CPU,
acall to the corresponding ISR executable-code vector is
performed, and interrupts are blocked until an instruction
that beginsin byte one of aninstruction group isexecuted.
To service an interrupt without being interrupted by a
higher-priority interrupt:

» the ISR executable-code vector typically contains a
four-byte branch, and

» the first instruction group of the interrupt service
routine must globally disable interrupts. See the code
examplein Table 37.

69

PTSC

; Interrupt Vectors

.quad 4

lext vectors ; org 0x100 set in linker

br int_0_ISR ; highest-priority ISR

br int_1_ISR

br iNt_7_ISR ; lowest-priority ISR

Jdext ISRs ; org set in linker file
int_0_ISR::

push mode ; save car

; This ISR cant be imterrupted because int 0
» has the highest priority.

hbp mode ; reslore carry
reti

int_A_ISR::
push mode ;save carry

: This ISR can be interrupted by a higher
; priority interrupt.

pop mode
reti

int_B_ISR:: .
push mode ; save carry & ei state
di

: Don't allow this ISR to be interrupted at all.

; ensure return before interrupts re-enabled

quad 2
pop mode
reti
int_C_ISR::
push mode ; save carry & ei state
g_op Istack : place accessible
]
; Don't allow this critical part of the ISR to be
; interrupted.
push 0
pop mode ; restore ei state

E'I'SR can be interrupted by higher-priority
; interrupts now

push Istack
pop mode
reti

: restore carry

Table 37 Code Example: | SR Vectors

PTSC

IGNITE™|P Reference Manual

If interrupts are left globally enabled during ISR
processing, a higher-priority interrupt can interrupt the
CPU during processing of the current ISR. This alows
deviceswith moreimmediate servicing requirementsto be
serviced promptly even when frequent interrupts at many
priority levels are occurring.

Note that there is a delay of one CPU-clock cycle
between the execution of e, di, or pop mode and the
change in the global interrupt enable state taking effect.
To ensure the global interrupt enable state change takes
effect before byte zero of the next instruction group, the
state-changing instruction must not be the last instruction
in the current instruction group.

If the global interrupt enable stateisto be changed by
the ISR, the prior global interrupt enable state can be
saved with push mode and restored with pop modewithin
the ISR. Usually a pop mode, reti sequence is placed in
the sameinstruction group at the end of the | SR to ensure
that reti is executed, and the local-register stack unnests,
before another interrupt is serviced. Since the return
address from an ISR is adways to byte zero of an
instruction group (because of the way interrupts are
recognized), another interrupt can be serviced
immediately after execution of reti. Seethe code example
in Table 37.

As described above for processing ISR executable-
code vectors, interrupt requests are similarly blocked
during the execution of al traps. This allows software to
prevent, for example, further data from being pushed on
the local-register stack due to interrupts during the
servicing of a local-register-stack overflow exception.
When resolving concurrent trap and interrupt requests,
interrupts have the lowest priority.

Bit Inputs

Eight external bit inputs are available in bit input
register ioin. They are shared for use asinterrupt requests
and as bit inputs for general use by the CPU.

Resources
The bit inputs consist of several registers, package

pins, and associated input sampling circuitry. These
resources include:

70

e Bit input register, ioin: bit inputs configured as
interrupt requests or general bit inputs. See Figure 11.

* Interrupt enable register, ioie: indicates which ioin
bits are to be recognized asinterrupt requests. See Figure
15.

e Interrupt pending register, ioip: indicates which
interrupts have been recognized, but are waiting to be
prioritized and serviced. See Figure 12.

* Interrupt under serviceregister, ioius: indicateswhich
interrupts are currently being serviced. See Figure 13.

e Bitinput pins, IN[7:0].

Input Sampling

Thebit inputsare sampled from I N[7:0] every CPU-
clock cycle and clocked into the IOIN register.

Zero-

ersistenc
Control

|
|
I LA Y
|
|
Il

,,,,,,,,,, |

INTC

zero-persist INX

CPU

write INX

Figure 10 Bit Input Block Diagram

Zero Persistent

The bit inputs reaching ioin are normally zero-
persistent. That is, once an ioin bit is zero, it stays zero
regardless of the hit state at subsequent samplings until
the bit is “consumed” and released, or is written with a
one by the CPU. Zero-persistent bits have the advantage
of both edge-sensitive and level-sensitive inputs, without
the noise susceptibility and non-shareability of edge-
sengitive inputs. Under certain conditions during ioin
interrupt servicing, theioin bitsare not zero-persistent. An
effect of the INTC can be used to disable zero-persistent
behavior on the bits. See General-Purpose Bits below.

The code exampl es assume both zero persistenceand
input sampling. When both zero persistence and input

IGNITE™ |P Reference Manual

sampling are disabled the inputs read read in the same
manner and behave conventionally.

; Disable zero-persistence for bit input 7
push.n #-1 ; true flag

push.b #ioTius_i

sto.i] : set under service bit
push.b #ioTie_i
sto.i 1} ; enable interrupt

pop ; discard flag

Table 38 Code Example: Bit Input Without Zero-
Persistence

Interrupt Usage

An ioin bit is configured as an interrupt request
source when the corresponding ioie bit is set. While an
interrupt request is being processed, until its ISR
terminates by executing reti, the corresponding ioin bit is
not zero-persistent and follows the sampled level of the
external input. Specifically, for a given interrupt request,
whileitsioiebitisset, and itsioip bit or iciusbit isset, its
ioin bit is not zero-persistent. This effect can be used to
disable zero-persistent behavior on non-interrupting bits
(see below).

General-Purpose Bits

If anioin bit is not configured for interrupt requests
then it is a zero-persistent genera-purpose ioin bit.
Alternatively, by using an effect of the INTC, general-
purpose ioin bits can be configured without zero-
persistence. Any bits so configured should be the lowest-
priority ioin bits to prevent blocking a lower-priority
interrupt. They are configured by setting their icie and
ioius bits. The ioius bit prevents the ioin bit from zero-
persisting and from being prioritized and causing an
interrupt request. See the code examplein Table 38.

PTSC

Bits in ioin are read and written by the CPU as a
group with ldo [ioin] and sto [ioin], or are read and
written individually with Ido.i [ioXin_i] and sto.i
[ioXin_i]. Writing zero bitsto ioin has the same effect as
though the external bit inputs had transitioned low for one
sampling cycle, except that there is no sampling delay.
This allows software to simulate events such as external
interrupt requests. Writing one bits to ioin, unlike data
from external inputs when the bits are zero-persistent,
releases persisting zerosto accept the current sample. The
written data is available immediately after the write
completes. The CPU can read ioin at any time, without
regard to the designations of the ioin bits, and with no
effect on the state of the bits. The CPU does not consume
the state of ioin bits during reads. See the code examples
in Table 39.

: Read current state of zero-persistent input pins.
: (Assumes pkgio is set, and bits are zero-persistent)

; Assume we just tickled a device and we want to

: see if it just responded, but we have the bits

: configured as zero-persistent. The sample interval
: of four CPU-clock cycles and the sample holding

: delay of four CPU-clock cycles means there is a

; worst-case delay of eight CPU-clock cycles before
: the data is available in ioin. So...

: Put programming to tickle device here...

nop ; wait the delay time
nop

nop

nop

nop

nop ; 6 here, two below

: Read last sampled state of all zero-persistent
; bit inputs (Assumes all bits are configured as
: zero-persistent)

push.n #-1 ; all ones for all bits (7)
push.n #ioin ; (CPU-clock cycle # 8)
; ...data is now available
: to ioin.
sto (] ; Temporarily remove
; persistence, latest
; sample latches,
pop ; discard -1

push.n #ioin

Ido [] ; get last sample

Table 39 Code Example: CPU Usage of Bit
Inputs

PITISC IGNITE™|P Reference Manual

To perform a “real-time” external-bit-input read on
zero-persistent bits, ones bits are written to the bits of
interest in ioin before reading ioin. This releases any
persisting zeros, latches the most recently resolved
sample, and reads that value. Bits that are not configured
as zero-persistent do not require this write. Note that any
value read can be as much as two worst-case sample
delays old. To read the values currently on the external
inputs requires waiting two worst-case sample delays for
thevaluesto reachioin. Seethe code examplein Table40.

: Force service on bit 5 (Interrupt or DMA, as
: configured)

push.n #0 : false flag

push.n #io5in_i
sto.i 1l ; Clear input bit
pop ; discard flag

; Read last sampled state of zero-persistent bit
s inputs. (Assumes all bits are configured as
; Zero-persistent).

push.n #-1 ; all ones for all bits
push.n #ioin
sto [l ; temporarily remove

; persistence, latest
; sample latches,

pop ; discard -1
push.n #ioin

Ido] ; get last sample

Table 40 Code Example: CPU “Real-Time” Bit
Input Read

72

IGNITE™ |P Reference Manual

\ Bit Outputs

Eight general-purpose bit outputs can be set high or
low by the CPU. The bitsare availablein the bit output
register, ioout.

Resources

Thebit outputs consist of aregister and pins. These
resources include:
» Bitoutput register, ioout: bitsthat werelast written
by the CPU. See Figure 15.
* Bit outputs, out[7:0]

On-Chip Resour ce Registers

The on-chip resource registers comprise portions of
variousfunctional areas on the CPU including the CPU,
INTC, and bit inputs. The registers are addressed from
the CPU in their own address space using the
instructionsldo and sto at theregister level, or Ido. and

PTSC

sto. at the bit level (for those registers that have bit
addresses). On other processors, resources of thistype
are often either memory-mapped or opcode-mapped. By
using a separate address space for these resources, the
normal address space remains uncluttered, and opcodes
are preserved. Except asnoted, dl registersarereadable
and writable. Areas marked “Reserved Zeros’ contain
no programmable bits and always return zero. Areas
marked “ Reserved” contain unused programmeable bits.
Both areas might contain functional programmable bits
in the future.

Thefirst severa registers are bit addressable in
addition to being register addressable. This alowsthe
CPU to modify individual bits without corrupting
other bits that might be changed concurrently by
INTC logic.

The bits are read and written by the CPU as a
group with ldo [ioout] and sto [ioout], or are read and
written individually with Ido.i [ioXout_i] and sto.i
[ioXout_i]. Whenwritten, the new valuesare available
immediately after the write compl etes.

00 ioin Bit Input

31

8 76543210

Reserved Zeros

Bit Address Mnemonic

07 i07in_i
06 i06in_i
05 in6in_i
04 iodin_i
03 i03in_i
02 i02in_i
01 iolin_i
00 i00in_i

Description
I/0O bit 7 input——
I/O bit 6 input
I/0O bit 5 input
I/0O bit 4 input
I/O bit 3 input
I/0O bit 2 input
I/0O bit 1 input
I/O bit O input

Figure 11 Bit Input Register

73

PITISC IGNITE™|P Reference Manual

Contains sampled data from inputs[7:0]. ioin is the source of inputs for al consumers of bit inputs. Bits are zero-
persistent: once abit iszero inioin it stays zero until consumed by the INTC, or written by the CPU with a one.
Under certain conditions bits become not zero-persistent. See Bit Inputs. The bits can be individually read, set and
cleared to prevent race conditions between the CPU and the interrupt controller logic.

20 ioip Interrupt Pending
31 8 76543210
Reserved Zeros

Bit Address Mnemonic Description
27 io7ip_i 1/O bit 7 interrupt pending——
26 i06ip_i 1/O bit 6 interrupt pending
25 io5ip_i 1/O bit 5 interrupt pending
24 iodip_i 1/O bit 4 interrupt pending
23 i03ip_i I/O bit 3 interrupt pending
22 i02ip_i 1/O bit 2 interrupt pending
21 iolip_i I/O bit 1 interrupt pending
20 i00ip_i I/O bit 0 interrupt pending

Figure 12 Interrupt Pending Register

Containsinterrupt requeststhat are waiting to be serviced. Interrupts are serviced in order of priority (0 = highest, 7
= lowest). An interrupt request from an I/O-channel transfer or from int occurs by the corresponding pending bit being
set. Bits can be set or cleared to submit or withdraw interrupt requests. When anioip bit and corresponding ioie bit are
set, the corresponding ioin bit is not zero-persistent. See Interrupt Controller. The bitscan beindividually read, set and
cleared to prevent race conditions between the CPU and the interrupt controller logic.

40 ioius Interrupt Under Service
31 87 6543210

Reserved Zeros

Bit Address Mnemonic Description

47 io7ius_i /O bit 7 interrupt under service——

46 io6ius_i I/O bit 6 interrupt under service

45 iobius_i 1/O bit 5 interrupt under service

44 iodius_i 1/O bit 4 interrupt under service

43 io3ius_i I/O bit 3 interrupt under service

42 io2ius_i /O bit 2 interrupt under service

41 iolius_i /O bit 1 interrupt under service

40 ioOius_i I/O bit O interrupt under service

Figure 13 Interrupt Under Service Register

74

IGNITE™ |P Reference Manual PTSC

Contains the current interrupt service request and those that have been temporarily suspended to service a higher-
priority request. When an | SR executabl e-code vector for an interrupt request is executed, theioius bit for that interrupt
request is set and the corresponding ioip bit is cleared. When an | SR executes reti, the highest-priority interrupt under-
servicehitiscleared. The bitsare used to prevent interrupts frominterrupting higher-priority | SRs. When anioiusbit and
corresponding ioie bit are set, the corresponding ioin bit is not zero-persistent. See Interrupt Controller.

The bits can be individually read, set and cleared to prevent race conditions between the CPU and INTC logic.

60 ioout Bit Output
31 87 6543210

Reserved Zeros

Bit Address Mnemonic Description
67 io7out_i 1/O bit 7 output ——
66 iobout_i 1/O bit 6 output
65 ioSout_i 1/O bit 5 output
64 iodout_i 1/O bit 4 output
63 io3out_i 1/O bit 3 output
62 io2out_i 1/O bit 2 output
61 iolout i 1/O bit 1 output
60 ioOout_i 1/O bit 0 output

Figure 14 Bit Output Register

Contains the bits from CPU bit-output operations. Bits appear on OUT[7:0] immediately after writing.
The bits can be individually read, set and cleared.

80 ioie Interrupt Enable
31 876543210
Reserved Zeros

Bit Address Mnemonic Description
87 io7ie_i 1/O bit 7 interrupt enable —
86 io6ie_i 1/O bit 6 interrupt enable
85 ioSie_i 1/O bit 5 interrupt enable
84 iodie_i 1/O bit 4 interrupt enable
83 io3ie_i 1/O bit 3 interrupt enable
82 io2ie_i 1/O bit 2 interrupt enable
81 iolie_i 1/O bit 1 interrupt enable
80 ioOie_i 1/O bit O interrupt enable

Figure 15 Interrupt Enable Register

75

PITISC IGNITE™|P Reference Manual

Allows a corresponding zero bit inioin to request the corresponding interrupt service. When an enabled interrupt
request is recognized, the corresponding ioip bit is set and the corresponding ioin bit is no longer zero-persistent. See
Interrupt Controller, page 79. The bits can be individually read, set and cleared. Bit addressability for thisregister is
an artifact of its position in the address space, and does not imply any race conditions on this register can exist.

120 mfltaddr Memory Fault Address Register
31

Menory Fault Address

Register is read-only.

Figure 16 Memory Fault Address Register

When a memory page-fault exception occurs during a memory read or write, mfltaddr contains the address that

caused the exception. The contents of mfltaddr and mfltdata are latched until the first read of mfltaddr after the fault.
After reading mfltaddr, the datain mfltaddr and mfltdata are no longer valid.

140 mfltdata
31

Memory Fault Data Register

Menory Fault Data

Regi ster is read-only.

Figure 17 Memory Fault Data Register

When a memory page-fault exception occurs during a memory write, mfltdata contains the data to be stored
at mfltaddr. The contents of mfltaddr and mfltdata are latched until the first read of mfltaddr after the fault.

76

IGNITE™ |P Reference Manual PTSC

1A0 miscc Miscellaneous C
31 ‘ 765 0
Reserved Zeros
Mhenoni ¢ Descri ption
ms pwe menory system posted-wite enable

Figure 18 Miscellaneous C Register

If set, enables a one-level CPU posted-write buffer, which allows the CPU to continue executing after a write to
memory occurs. A posted write has precedence over subsegquent CPU reads to maintain memory coherency. If clear, the
CPU must wait for writes to complete before continuing.

Onchip Resource Register values upon CPU reset:
Table 40 providesthe values of all of the onchip registers upon the occurrence of areset event to the IGNITE CPU.

Address Register Description Initial value
000 ioin Bit Input Register 0000 OOFF
020 ioip Interrupt Pending Register 0000 0000
040 ioius Interrupt Under Service Register 0000 0000
060 ioout Bit Output Register 0000 OOFF
080 ioie Interrupt enable Register 0000 0000
120 mfltaddr Memory Fault Address Register XXXX XXXX
140 mfltdata Memory Fault Data Register XXXX XXXX
1A0 misc Miscellaneous C Register 0000 0000

Table 40 Resour ce Register Reset Values

77

PITISC IGNITE™|P Reference Manual

This section of the document providesall of theinformation adesigner will require designing thelogic to interface with
memory and other peripheral devicesfor the Ignite CPU processor core embodied as a net-list in EDIF file format.

BusInterface

The bus interface of the Ignite CPU is relatively simple. There are no special requirements other than depicted in the
timing diagrams.

Posted Writes

Thelgnite CPU supports aone-deep posted writeto allow it to continue execution while the writeto the external device
isin progress. Typicaly CPU execution will subsequently stall waiting for the next bus operation to start.

SYMBOL | TYPE | DESCRIPTION

*RESET I RESET: Asserting thissignal (active low) causes the CPU to initialize all
internal registers and begin execution at the hardware reset location

CLOCK I CLOCK INPUT: Thisisthe clock input to the processor provided by a clock
source. The processor runs at the same frequency of the clock input

MAR[31:0] | O ADDRESS OUTPUT: This is the 32-bits of address bus produced by the

processor. The address bus is non-multiplexed

MDR[31:0] | I/O DATA OUTPUT: Thisis32-bits of data bus produced by the processor. The data
bus is non-multiplexed and conforms to big-endian standard

*INB [7:0] I BIT INPUTS: These active low signals act as general or interrupts inputsto the
processor

ouTB[7:.0] | O BIT OUTPUTS: These byte signals acts as general-purpose outputs from the
processor. These are bit programmable.

WR 0] READ/WRITE: Thisactsasthe Read/Write signal produced by the processor. A
logic HIGH serves as Write. A logic LOW serves as Read.

REQ @) REQUEST: Thisoutput signal indicates the beginning of aread or write transfer
cycle of the processor from an idle state

DVAL I DATAVALID: Thisinput signal generated by external indicatesthe completion of
aread or write transfer to the processor

*FAULTB I MEMORY FAULT: This active low input signal generated by external logic

indicates a faulty memory location access by the processor

Table 41 Signal Descriptions
Reset *RESET, input

When asserted active (low), completely initializes the CPU. When de-asserted, CPU execution begins at the address
0x80000008. This signa isinternally synchronized with the CPU clock.

78

IGNITE™ |P Reference Manual PTSC

The *Reset signal must stay activate for at least 4 clock cycles for the processor to reach its quiescent state.
O ock CLOCK, input

Thereisno phaselock loop built into the Ignite | Pand therefore all operationswithin the Ignite IPrun off thisclock input
Baring afew, al instructions run in asingle cycle clock as mentioned in the Ignite Reference Manual .

Address MAR [31: 0], output

The address bus provides non-multiplexed address for current CPU bus access. The rising edge of r equest signal
indicates the start of bus read/write transfer cycle, which also indicates a valid address on the bus.

Theaddressremainsvalid until the end of the rising edge of the CPU clock following adatavalid dval input going active.
The two least-significant bits of the address are ignored when fetching or writing cell-wide data. Thefirst valid address
after ar eset has been active isthe CPU reset address.

Data MDR [31:0], input/output

Provides 32 bit datainput whenwr i t e isinactive. Provides 32 bit data output whenwr i t e isactive.
Therising edge of Request signal indicates valid write data.

The write data remains valid until the end of the rising edge of the CPU clock following a datavalid dval input going
active. For read operations the read data needs to meet the setup and hold time with respect to rising edge of CPU clock
after Datavalid signal dval goes active.

The interface to the ignite_ip EDIF file logic consists of a 32-bit data in bus mdi<31:0> and a 32-bit data out bus
mdo<31:0>. The bi-directional pin driver of the FPGA combines these to form MDR <31:0>.

| nput, INB [7:0], input

Bit inputs can be used for general-purposeinputs or asinterrupt requests. Theseinputsare accessible by the CPU through
i oi n register. Theseinputsneed to be synchronized with the CPU clock before presenting to the Ignite IPFPGA device.

Output, OUTB [7:0], output

Bit outputs for general-purpose use. These bits are accessible by the CPU through thei oout register.

Read/ Wite WR, output

When active, indicatesthat the current bus cycleisawrite cycle. When inactive, indicatesthe current buscycleisaread

cycle. Thissignal isactive concurrent with the REQ signal that signifiesthe start of abustransfer cycle. Thissignal goes
active at the rising edge of the CPU clock.

79

| o N @

IGNITE™ |P Reference Manual

CPU datatransfer state, REQ, output

Thissignal goes active at the rising edge of the CPU clock indicating the beginning of a bus transfer cycle.

Data Valid DVAL, output

This signal generated by externa logic indicates to the Ignite CPU as to when it is time to complete the current bus
transfer cycle. This active High signal is sampled by the rising edge of the CPU clock. If there is a pending bus cycle,
then the CPU will immediately start the next transfer on the rising edge of the CPU clock.

Memory Fault *FAULTB, input

If thepin*f aul t b isasserted (active low), and memory fault traps are enabled, following arequest at the beginning
of abus transfer cycle, then the CPU will immediately transfer execution to the memory fault trap location to handle
the memory fault. Thissignal is provided by an external logic implementing a memory manager function. Memory
fault traps are enabled by bit 27 of the mode register. The address and write-data that caused the memory fault saved
ininternal registers and are retrieved allowing memory fault recovery. The *f aul t b going active has arequired
setup time and should also be driven inactive after the invalid memory cycle completes. The memory manager
generating the *f aul t b signal must also generate dval to complete the current cycle.

If *f aul t b isasserted, and memory fault traps are not enabled, operation will be unaffected, provided that
*f aul t b isremoved in atimely manner.

The*f aul t b signal might be generated by external logic because of either memory errors detected by parity
circuitry or memory non-availability caused by memory page swapping.

Bus Interface

The businterface for the Ignite CPU employs avery simple request/acknowledge protocol that has been the traditional
mechanism for most embedded processors.

There are two modes of bus transaction that are intended for single and multiple access mode of access respectively.

The Ignite processor IPis a completely synchronous design. All timing information will be stated with respect to the
clock edge, period or duty cycle of the clock that it is operated from.

Timing Information

Thetiming specifications for the part as mentioned in the | P data sheet were derived post synthesisusing TSMC library
of parts for the 0.18-micron technology, and will be different for other technologies.

All output drivers will be specific to the user implementation.

All inputs have a setup time with respect to the clock input of the device. All outputs have aclock to output time delay
referenced to the clock input of the device.

80

IGNITE™ |P Reference Manual PTSC

CPU Clk y
Dl - @’4-
Address _—» ValidA ddress X X ValidAddress /""X
o =l (
Request | | }"l
Data validData) < (Valid Data /\
Write N N\
- @ | —
DataValid V//I} »(F)-- | J
CPU State Busdie)E"’ Read X fer Bus ldle Read X fer V Busldle

Ignite CPU Read

No Symbol Description Min Typical | Max | Notes
1 t_addrout Addressvalidout | Tepon °°° or Foundry library
B from clock rise TeoL 0! specific "'
2 t_addrinval Addressinvalid | Teuon °°° or Foundry library
from clock rise TeoL 0! specific "'
3 t_reqvalout Request valid out | Teuon 0> FoundryNI(i)Erzary
from clock rise specific
4 t_reginval Request invalid Terol e ?
from clock rise
5 t rdatasetup | Read Datasetup | Tioock o>
6 t rdatahold | Read DataHold | T,omock o °
7 t dvasetup | Datavalidsetup | 0.6T_clkperiod " Meeting Min
to clock rise parameter assures 1
cycle memory
Notel
access
8 t_dvalhold Datavalid Hold | Tiomock o °

Table 42 CPU Read Timing Parameters

Notes:

Notel

Note 2

Note 3
Note 4
Note 5
Note 6

T _clkperiod refersto the clock period of the CPU clock. Thisisan absolutely critical parameter to meet for 1
cycle memory access

These parametersin thisrow are defined by the Foundry provided library for aspecific semiconductor geometry
and process

Thisisthe delay as specified by the component library for clock High to output High

Thisisthe delay as specified by the component library for clock High to output Low

Thisisthe Setup time before the clock active signal as specified by component library

Thisisthe Hold time after the clock active signal as specified by component library

81

IGNITE™ |P Reference Manual

| o N @

CPU Clk A | A /
Address X Valid Address X X valid Address| Y
Reguest &"| | | 1
Data valid Data } < Valid Data /\;E/
'@t >0 I
Write | | ?’|
Data Valid N\ V//II =@ = | T\}
CPU State Bus!die ,(/ Write Xfer Y Buside Write Xfer ,4/ Busl die
Ignite CPU Write
No Symbol Description Min Typical | Max | Notes
10 t_dataout Datavalid out Teron % or Foundry library
from clock rise TeoL 0! specific "'
12 t_dataz Data tri-state from | T,o. 3 Tiomhz o’ Foundry library
clock rise spegific "'
11 t wrtvalout | Writevalid out Teron 0e? Foundry library
from clock rise specific "'
13 t_wrtinval Writeinvalid Terol e ?
from clock rise
7 t dvasetup | Datavalidsetup | 0.6T_clkperiod " Meeting Min parameter
to clock rise MFESN]E’ t(:eylcle memory
8 t_dvalhold Datavalid Hold | Tiompck o °

Table 43 CPU Write Timing Parameters

Notes:

Notel T clkperiod refersto the clock period of the CPU clock. Thisisan absolutely critical parameter to meet for 1
cycle memory access

Note 2 These parametersin thisrow are defined by the Foundry provided library for aspecific semiconductor geometry
and process

Note3 Thisisthe delay as specified by the component library for clock High to output High

Note4 Thisisthe delay as specified by the component library for clock High to output Low

:0:6 : Thisisthe Setup time before the clock active signal as specified by component library

ote

Thisisthe Hold time after the clock active signal as specified by component library
Thisisthe input to high-impedance delay as specified by component library

Note7

82

IGNITE™ |P Reference Manual

CPU CIlk

Address

Reques

Data

Write

Data Valid

PTSC

ValidAddress

New Address

New Address

N

Valid Data

[

~<

Valid Data
\

/<\

alid Data

CPU Sate

Idle

Read Xfer

Read Xfer

Read Xfer

Idle

CPU Clk

Ignite CPU Multiple Access Read

Address

Valid Address

New Address

New Address

Request

Data

Write

Valid Data,

New Data

New Data

~

DataValid

CPU Sate

Idle

Write Xfer

Write Xfer

Write Xfer

Busldle

Ignite CPU Multiple Access Write

83

| o N @

IGNITE™ |P Reference Manual

CPU Clk 4) |

Address X INvalid Address X /—"FX Vector Address X

Request | |J_,_,/&i>| |

Data Valid V/ 1O a | |

. |<—
FAULTB* /N G/ TV
CPU Sate Bus! die) Bus! dle Read Xfer for FAULTB Vector Busldle
Ignite Memory Fault
No Symbol Description Min Typical | Max | Notes
7 t dvalsetup | Datavalidsetup | 0.6T_clkperiod "0 Meeting Min
to clock rise parameter assures 1

cycle memory
access Notel

8 t_dvalhold Datavalid Hold | Tiomock o¢°

Table 44 M emory Fault Operation Timing Parameters

Notes:
Notel T _clkperiod refersto the clock period of the CPU clock. Thisisan absolutely critical parameter to meet for 1

cycle memory access
No® Thisisthe Hold time after the clock active signal as specified by component library

84

	IMPORTANT NOTICE
	Disclaimer
	Critical Applications Policy
	Purpose
	Overview
	Microprocessor Unit
	Address Space
	Registers and Stacks
	Programming Mode
	Instruction Set Overview
	ALU Operations
	Branches, Skips, and Loops

	Literals
	Data Movement
	Loads and Stores
	Stack Data Management
	Stack Cache Management
	Byte and Word Operations
	Floating-Point Math
	Debugging Features
	On-Chip Resources
	Miscellaneous
	Stacks and Stack Caches
	Stack-Page Exceptions
	Stack Initialization
	Stack Depth
	Exceptions and Trapping
	Floating-Point Math Support
	Data Formats
	Status and Control Bits
	GRS Extension Bits
	Rounding
	Exceptions
	Hardware Debugging Support
	Breakpoint
	Single-Step
	CPU Reset
	Interrupts
	Bit Inputs
	Bit Outputs
	Posted-Write
	On-Chip Resources
	Instruction Reference
	ANS Forth Word Equivalents
	Java Byte Code Equivalents
	Interrupt Controller
	Resources
	Operation
	Interrupt Request Servicing
	Recognizing Interrupts
	ISR Processing
	Bit Inputs
	Resources
	In˜put Sam˜pling
	Zero Persistent
	Interrupt Usage
	General-Purpose Bits
	CPU Usage
	B
	Bit Outputs
	Resources
	On-Chip Resource Registers
	Address

	Bus Interface
	Posted Writes
	When asserted active (low), completely initializes the CPU. When de-asserted, CPU execution begins at the address 0x80000008. This signal is internally synchronized with the CPU clock.
	The *Reset signal must stay activate for at least 4 clock cycles for the processor to reach its quiescent state.
	Timing Information

