Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

CHATNET - aDistributed Multi-
channel Conferencing Protocol

Gerrit Hiddink
University of Twente
January 1995

ABSTRACT

The am of this paper is to give insight into the problems of the IRC protocol, and how they are solved by
theproposed protocol, called Chatnet. It a so explai nsthestructure of Chatnet, howitisdivided into functiona
parts and how these parts interact. Special attention is given to the Multicast layer, and what unsolved
problems still exist. Also the error-correcting properties of the protocol are explained. Finally some
concluding remarks are given.

About the author

The author is a Computer Science graduate student at the University of Twentein Enschede, Holland. His
fieldsof interest are multicast routing, distributed computi ng and internetworking. Hisgraduation assignment
will have something to do with some of these three, applied to ATM networks. The work presented here,
however, was conducted in his spare time.

E-mail address. hiddinkg@pegasus.esprit.ec.org

This paper isto be presented a Gronics’ 95, 24 february 1995, Groningen, The Netherlands.

1. What is a distributed
multi-channel conferencing

protocol anyways?
A distributed systemisasystemthat consists of

processing elements with communication chan-
nel sbetweenthem. A distributed protocol descri-
bes the way the processing elements
communicate viathese channels. A conferencing
protocol is a set of rules that describes the mes-
sage exchange of a system that is built to let
people conference with eachother. A multichan-
nel conferencing protocol is a protocol for a
conferencing system in which peoplecan talk in
channels (sometimes caled groups). Conferen-
cing systems aremostly based on the client-serv-
er model. The conferencing systemthat ismostly
used on the Internet, Internet Relay Chat or IRC
for short, is aso based on this model; its main
property isthat the servers maintain all data ne-
cessary torunthe sy stem, andthat clientsconnect
to them to request this data. Servers are perma-

nently coupled using communication links,
mostly TCP connections. A good way to model
adistributed system isthe following: servers are
nodes in agraph. The edges are the communica-
tion links between them. If the graph is connec-
ted, then information between all nodes can be
exchanged. |n some sy stems, servers use explicit
knowledge of the graph in order to route infor-
mation throughthe graph. For example, thegraph
of the IRC protocol is a spanning tree. When
carefully chosen, a spanning tree can provide a
fast and efficient way to distribute information
through the graph.

2. Problems of existing

conferencing protocols
Theforementioned IRC protocol isdescribedin

RFC1459. Currently over 4000 users are on-line
at atime, using about 100 servers; conversations
are grouped into about 1500 channels. The pro-

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.


http://www.verydoc.com
http://www.verydoc.com

tocol, however, does not scale to this amount of
users. Its main problems will be treated below.

2.1 Spanning tree

TheIRC protocol uses aspanning tree to distri-
bute information. A spanning tree formdly is a
graph of nodes (servers) and edges (communica
tion links) that spans every server, and does not
contain cycles. Thismeansthereisonly oneway
to reach a certain destination. Messages cannot
beduplicated. As said before, aspanning tree can
be avery eficient way to distribute information.
Thereishowever one mgjor drawback: whenever
a communication link breaks, the treeis split in
two parts. Both will continue functioning nor-
mally, but their state information (user and chan-
nel tables etcetera) will become different. These
two versions then should be merged again when
thelink ismended, whichisnot atrivial question.

The probability of alink breaking growslinear-
ly with the number of links. This means that the
larger such a system becomes, the more instable
itwill be.

Finding the most efficient spanning tree needs
explicit knowledge of the underlying network
service, e.g. what network links are fastest. This
knowledge is often obtained by average ping
times. Then it is decided where the new server
must belinkedin, and it remai nstherefor therest
of its lifespan. If the network characteristics
change however, parts of the tree should be re-
built to obtain the most efficient spanning tree.
The IRC protocol has no provisions to do this
automatically, so that maintaining thetreeisalot
of work in large systems, and it becomesincrea:
singly more work asthe network grows. In other
words: it does not scale very well.

The spanning tree a so does not adapt to conge-
sted servers, asitisstatic. Heavily loaded servers
cause long ping times, so that pingstime out and
the link to the congested server is disconnected,
thus splitting thetree. When both partsarejoined
again, they start exchanging their state informa:
tion. This can cause avery high load in alarge
system, causing ping timeouts etcetera. The pos-
sibility that this process repeats over and over
againisquitehigh. Theheavy task of maintaining
the IRC network has been the cause of fights
between the IRC operators in the past. This has
inafew casesledto adivison in which agroup
of operators created their own IRC network. Cur-
rently two relatively large IRC networks are in

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

operation (4000 and 500 users, respectively ca-
led EFnet and Undernet), aswell assevera small
ones. These unfortunate events have caused IRC
to be viewed as a “young people’s toy” not
suitable for professional conferencing, as some
fights were guided by link breaks caused by IRC
operators themselves. It is hoped that the propo-
sed protocol will become atool as useful as any
other common Internet resource.

2.2 State information

The above mentioned problemswould not beas
sincere if the state information kept by every
server would be minimal. Every server, however,
keeps information about every user, every chan-
nel, every server, and what user is on what chan-
nels with what user modes. It is clear that the
amount of state information scales linearly with
the number of users: twice as much users need
twice as much server memory to store the state
information. Theinter- server traffic betweenany
two servers also scaleslinearly, as every change
in the characterstics of any user is distributed to
all servers (eg. achangein nickname, usermode,
or achange in the channels the user ison). Due
tothisbad scaling, the protocol will cause physi-
cal limits to be reached when scaled infinitely.
For example, acommunication link may be una-
bleto carry theamount of traffic neededto update
the global state information.

3. Solving these problems

3.1link breaks

If we want to avoid the effect of increasing
probability that a link breaks, we must supply
redundant links. This causes cycles (from graph
theory we can learn that atree becomes cyclic if
any random edge is added). o that routing is not
trivial anymore. Fortunately an elegant solution
does exist (see next section). The proposed solu-
tion also automatically avoids routes through
congested servers and links. The routing infor-
mation is updated dynamically without human
intervention.

3.2 state information

To minimize memory usage of aserver and link
bandwidth, we must only send what is really
needed. If, for example, a server does not have
any users on a certain channel, it does not have

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.


http://www.verydoc.com
http://www.verydoc.com

to know what the channel characteristics are, or
what users are on the channel. Only when auser
requests this information from the server, the
server must try to obtain thisinformation. So we
must create somesort of channel-membershipfor
servers. They must subscribe to a channel first,
after which they receive dl data necessary to
maintainthechannel datalocally. Serversalso do
not need to know all users. They only know the
users that are participating in the channels that
the server isamember of. Thisalso meansthat a
server cannot verify if anick is dready in use.
Thisisnot aproblem aslong asthetwo users do
not join the same channel. But then they can be
identified using the serverid they’re using; this
serverid can be appended to their nicks. But any
other arbitrary identification method can be used,
suchasuniquedigitsor symbols. Thisalso solves
the problem IRC has with its nickname space:
nicksare 9 charactersonly, and noidentica nicks
are allowed.

3.3 rejoining the net

If thenetwork of conferenceserversshould split
and rgoin, no specia action needs to be taken.
When two servers encounter conflicting data,
they start ashort “ discussion” astowhat version
of the data should be used. This means that al
inconsistencies are dowly removed, so that no
“net burst” is generated. This improves band-
width efficiency and prevents link overloading.
See a 5o section 6 on Error Correction.

4. Structure of Chatnet

4.1 Network Objects

First, let us introduce the network objects:

Servers are identified using a unique 32-bit
serverid. This id is given to them by a centra
authority. A server is either the entire protocol
stack, or only thethird layer.

Clients are identified by a 16-bit userid that is
uniguewithin the scopeof the server. Sothetuple
(serverid, userid) uniquely identifiesauser onthe
entire net.

Channédsareidentified using acaseinsensitive
character string of at most 32 characters.

A client is a program that has connected to a
server and identified itself asaclient.

Termsthat will be used to describe the protocol
are thefollowing:

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

SAP, or Service Access Point: an abstract point
a which interaction between a service provider
and a service user takes place.

Service Primitive: a Service Primitive descri-
bes the interaction that may take place. It can
have parameters, for example ConnReq (ad-
dress). This Service Primitive can indicate, for
example, that theserviceuser requeststhe service
provider that aconnection be madeto* address”.

Service User: an abstract entity that can use a
service offered at a SAP.

Service Provider: an abstract entity that can
offer aservice at a SAP.

A service user interacts | )
here 1o make use of this entity Service Access Point

. 7
- -—

Protocol Entity

-
1\

A service provider offers
some service at this SAP

Fig. 1: graphical representation of a protocol entity

Protocol Entity: an abstract entity that imple-
ments a protocol. It usudly offers some service
a the “top” when modelled graphicaly (see
fig.1), and makes use of some service at the
bottom.

Protocol | nformation: theinformation kept by
aprotocol entity.

Peer entitity: a protocol entity with the same
functionality, but residing in a different compu-
ting environment (another computer system, or
merely another process on the same system).

A graphica representation of the Chatnet pro-
tocol structureisgiveninfig. 2. Thethreelayers
will be trested below.

4.2 The first layer: Network Interface
Layer

The protocol is designed such that it is not
dependent of the underlying network service.
Any reliable, connection oriented network can be
used to transport data between protocol entities.
In order to provide a uniform interface, a Net-
work InterfaceLayerisused. Thislayer offersthe
following functionality to the service user:

- establishing a connection

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.


http://www.verydoc.com
http://www.verydoc.com

- identifying and authenticating servers and
clients

- service negotiation (very rudimentary)

- buffering and transfer of data

- connection termination.

The Network Interface Layer must provide a
unigue connection identifier for each existing
connection, in other terms: a Service Access
Point for each connection. This can then be used
by the service user to identify a certain connec-
tion; the service user is not bothered by network
addresses, transport protocols etcetera. It only
notifies the service user of incomi ng connections
after they have been authorized. An incoming
connectionidentifiesits" type” (client or server),
its username or serverid, its protocol version,
software version and a password. This password
is checked against a database. If it iswrong, the
connection isterminated; otherwise, the approp-
riate service user is notified of the new connec-
tion (for each type, a different service user may
be informed). If the server cannot handle more
connections or is not willing to, it may send a
FULL message and terminate the connection.
The NIL layer furthermore handles aiveness of
communication links using PING messages (to
which the other end must respond within limited
time using a PONG message). Connections be-
tween servers are also called “ links” . The other
protocol information that the NIL layer must
maintain is the following: for each existing con-
nection, it must store the connection id that this
connection has been given. It must furthermore
store characteristics like network address of the
other end, the software running there, the proto-
col version that must be used to communicate
with the other end, etcetera. In order to identify
the other end, it must also store the serverid if it
isaserver, or aunique userid created by the NIL
layer if itisaclient.

The service primitivesthat are provided arethe
following:

nil_server_dataind (connid, data)

nil_server_discind (connid, serverid)

ni |l _server_conni nd (connid)

nil_client_connind (connid)

nil_client_dataind (connid, data)
nil_client_discind (connid)

The names quite explain what the service pri-
mitives do. These primitives are the only way for
aserviceuser tointeract withtheNIL layer. Since

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

- Server Layer

Client Layer : -
Multicast Layer
L s

Network Interface Layer

L
Connection-oriented reliable network \é

Fig. 2: the structure of the Chatnet protocol stack

the points of interaction are limited, the influen-
ces of the service user are clear.

4.3 The second layer: Multicast Layer

Above the NIL layer isthe Multicast layer and
the Client layer. Thus the Multicast Layer is a
service user of the NIL layer. It isonly used by
servers; clientstak directly tothe NIL layer. The
multicast layer providesthe following functiona-
lity:

- transmission of messages to alist of destina-
tion serverid's

- broadcasting of messages to al servers that
can be reached

- routi ng of messages to get themto their desti-
nation(s)

- resequencing of messages

- maintaining routing information

- building spanning trees with different roots
(future extension)

- gathering global characteristicsfromall nodes
in the entire graph (future extension)

The dgorithmsto build the routi ng information
are explained in the next section.

The Multicast layer uses datagrams. A da
tagram is a message that, amongst others, con-
tains a source identifier, a destination identifier
and the message body. The destination identifier
can be a single destination, or alist of destina-
tions.

4.3.1 The routing information

This consists of the following: for each server,
alist of links is maintained, in the order of res-
ponse times. Since servers are identified using a
unique serverid, thisid may be used as an index
to an array of alist of link id's (asalink isa
connection betweentwo servers, thelink idisjust
the connection id). Furthermore, the Multicast

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.


http://www.verydoc.com
http://www.verydoc.com

layer must maintainalist of dl linksithastoother
servers. It must know for each link a what rateit
may send data on that link. If, for example, a
particular server isalowedto connect viaaseria
link, then the NIL layer must know inwhat rate
it may send dataviathislink. Or, supposethat the
server isonly allowed to use alimited bandwidth
on aparticular network, it may be specified that
only 10kbit/s may be used. Thisinformation will
typically be provided in aconfiguration file.

The layer dso maintains alist of recently seen
broadcasts. This list may be cleaned a regular
intervals, removing old broadcasts. The interval
depends on the maximum delay in the network;
care must be taken that no broadcast is removed
from thelist while one or more copies of it could
be underway.

4.3.2 Message routing

The way messages are routed using this infor-
mation is asfollows:

Multicast messages: The protocol entity sorts
the serverid's in the destination list on the link
they can be reached fastest. If the datarate is
exceeded, it must use the second-fastest link,
etcetera. If the datarate of al linksisexceeded, it
must send the remaining data on the supposedly
fastest link. The server administrator is prefe-
redly notified of this event, asitisan indication
that the server hasn't got enough resources to
fulfill its task. After the list has been sorted into
smadller lists, the message is sent over al links
that have a non-empty destination list. Say, for
example, that server 1 wishes to send a message
to servers 2, 4 and 15 (see fig. 3). Suppose that
server 4 and 15 can be reached fastest vialink 5,
and that server 2 can be reached vialink 3. The
Multicast layer then creates a destination list
consisting of servers 4 and 15, and sends this
destination list along with the message to link 5.
It also creates a destination list with only server
2and sendsittolink 3. Notethat it may very well
be that it is not server 2 itself that is directly
connected vialink 3; the message will be passed
on from server to server until it reaches its desti-
nation. If a server recelves a multicast message
onalink, it treats it asif it sent it itself (sorting,
copying and dispatching the message). There is
one but: the Multicast layer must check that no
informationissent back over thelink themessage
arrived on; this way, some protection is offered

against cycling messages.

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

Mfrom 1102, 4,15
3 2
1
5

M from 1

M from 1
fo 2

V/ M fiom 110 4
2 18— 4
Rev: M from 1
Fig. 3: Chatnet multicast routing at work

Unicast messages Unicast messages are mes-
sages destined for one server. As may be deduced
from the explanation above, aunicast messageis
merely amulticast message withadestinationlist
consisting of only one server. It may thus be
treated as a multicast message.

Broadcast messages. Broadcast messages are
simply sent across every link that the Multicast
layer has to other servers. This may seem very
expensive, but broadcasting (“ flooding” ) is part
of the routing mechanism aswill be explainedin
the next section. If a server receives abroadcast
from say server S, it examinesthe sequencenum-
ber N attached to it. If it has aready received a
broadcast from S with number N, it updates its
routing information. If it has not yet seen this
broadcast, it sendsit over every link it hasto other
servers, except thelink it arrived on.

Bounced messages. When a particular server
A does not have alink to a server D, it must
“bounce” the message. This means that it is
marked as undeliverable, and sent over the link
towards the source server S of the message, say
to server B. When server B receives the bounced
messageon link x, it removes link x from thelist
of linksfor server D. Doing so, it remembersthe
fact that server D could not bereached vialink x.

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.


http://www.verydoc.com
http://www.verydoc.com

Server B then looks for another link to send the
message on towards server D. If it finds one, it
sends the message across this link, removing the
“undeliverable” mark. If it does not have alink
to server D, it bounces the message further back
towards its source S. So the message wanders
through the network, updating routing i nforma-
tion on theway, until either:

- it reaches its destination D;

- itreachesitssource S; Snow knowsthat server
D cannot be reached. I n this case the graph must
be unconnected. It notifiesthe service user of the
fact that server D is unreachable.

- some server doesn't have a link either to the
destination D or the source S. The message is
then said to be “ trapped” in a network partition
where nor its source, nor itsdestinationisin. The
message may then be discarded. (Note that this
is the only case in which a message may be
discarded by a server; messages can further be
lost when aserver crashes while the messageis
initsbuffer).

4.3.3 Service primitives
The following service primitives are offered:
ncast _dataind (serverid, data)
ncast _unreachabl e (serverid)
ncast _datareq (destlist, data)
ncast _connreq (serverid)
ncast _broadcast (data)

Again, the names will speak for themselves.

4.3.4 message resequencing

As messages from a certain source may travel
viadifferent routes, they may become reordered
by the network. The Multicast layer must there-
fore restore the order of all messagesthat arrive.
It may do thisby maintai ning abuffer of acertain
length for each server it is currently receiving
datafrom, to storemessagesin-order. As* holes”
arefilled, it may send the messagesto the service
user. Theremust dso be atimeout mechanismon
every waiting hole, because messagescan (inrare
cases) get lost. In this case, the Multicast layer
must forget about the message and send what it's
got to the service user. State information will
repair itself (see section 6), but theloss of confe-
rence datawill not be noticed. Duetothe severity
of this failure, the server administrator must be
informed about this event.

4.3.5 future extensions
Two mechani smshaveaready been defined but
not yet incorporated into the protocol: finding a

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

spanning tree (thea gorithm findsaspanning tree
using |+t messages, wherel isthenumber of links
inthegraph, andt the number of linksinthetree).
This algorithm will be used to support report
channels. These are channels with only a few
senders and a very large group of receivers (na
med after #report on IRC at the time of the gulf
war). The second is an dgorithm that collects
linear information. Linear information is infor-
mation that has a sum operator defined on it, so
that apiece of information can beaddedto a“ sub
totd” at each server. This agorithm could be
used to determine the total numbers of users
on-line throughout the net, or a numeric repre-
sentation of the total graph of the net. The algo-
rithm takes |+t messages to return the “ sum” to
the server that initiated the algorithm.

4.4 The third layer: Chatnet Server Layer

This layer maintains the actual conference in-
formation base. It interacts with the Multicast
layer in order to route inter-server traffic, and
with the NIL layer to send data to clients. The
Chatnet Server may actua ly be seenasconsisting
of aclient-part and aserver-part. Both partsshare
a large information base however. For this re-
ason, we will keep viewing it as a single layer.
The information that must be managed is the
following:

For each user knowntothe server, arecord must
be maintained. In it is the current nickname, the
user’ srea name, the user’ s network address, the
server it is coming from, the userid, and the
channels the user ison as far asthisis known to
theserver. A list of al channels must be maintai-
ned. Creation and starvation of channels are
broadcast through the net, so that the list of
channel scan be kept uptodate. Notethat thename
of the channel isthe only attribute that the server
knows.

For all channelsthe server ison, it must storea
list of users that are on the channel, the channel
characteristics (mode, topic etc) and all servers
that are subscribed to the channel.

The server must also maintain alist of its own
clients. Theinformation is the same as the i nfor-
mation for “ foreign” users, except that thelistis
extended by alist of usersthe client isignoring.

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.


http://www.verydoc.com
http://www.verydoc.com

5. Chatnet routing
A Multicast layer obtains its routing informa-

tion as follows: upon reception of the first copy
of abroadcast with source S and sequence num-
ber N onalink x, it clearsthelist of linksfor this
server, and places x at the head of thelist. It stores
thetuple (S, N) inalist so that it recognizesother
copies of the broadcast. If another copy arrives
at, say, linky, it addsy et thetail of thelist. Thus
alist of links is created in descending order of
speed. As explained in the previous section, the
link at the head of thelist is used to transmit data
on that is destined for server S, asthisisthelink
that is the first step in a route that has proven to
be fastest. Note that a Chatnet server does not
know the exact route the information follows; it
only knows the first hop. This scheme avoids
congestion, as broadcaststravelling through con-
gested areas will be delayed; they arrive much
| ater than broadcasts thet travelled another route,
so that the congested area is avoided. It is not
knownyetif “ oscillation” will occur. Oscill ation
issaid to happen if al serversdecide at the same
time that a certain route A is congested and
switch to route B, with the effect that now route
B will be congested and route A has no traffic
anymore. After some time the servers will dis-
cover this and switch again, etcetera

Thelist of linksfor each server that is obtai ned
using broadcasts, can be modified on a number
of occasions:

- reception of any multicast message. When a
message from server Sisreceived on link x, the
Multicast layer checks if x is at the head of the
list for S. If not, it removes x from the list and
insertsit a the head. The Multicast layer will use
link x if it has datafor S. Doing so, it adapts to
new routes that have been created one way or
another. If, for example, somewherein the graph
two servers have established a much faster con-
nection than other parts of the network, some
traffic may be rerouted as other servers discover
this faster path.

- reception of a bounced message. As mentio-
ned before, reception of a bounced message on
link x destined for server D causes X to be remo-
ved fromthe list of server D.

- link breaks. When a network connection
breaks for some reason, the NIL layer will send
aDisclnd(Cid) to the Multicast layer. The Mul-
ticast layer must then search through the list of

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

ALL servers, removinglink Cidfromtheservers
list.

- link creation. Serversmay createlinksarbitra-
rely. If server A creates alink x with server B,
both put x at the head of the list for the other
server. Note that x may have different values a
both ends, as the domain in which links are
numbered, islimited to the memory of each serv-
er. Theexistenceof thislink issowly propagated
through the graph; let’ s say server C hasalink y
with B, and sendsitstrafficto A viaanother link,
z. It then notices that traffic for server A is
suddenly coming from link y, as server B has a
directlink to A. According to the rules explai ned
above, server C putslink y at the head of thelist
for server A, so that it will now use the more
direct routeto A.

6. Error correction
The protocol has a number of provisions to

correct errors. Errors can be divided into two
classes: routing errors and conference informa
tion inconsistencies. As explained in section 4
and 5, routing errors are resolved using the con-
cept of “ bounced messages” . The mechanismto
correct conference information errors works
about the same: a server A noticing a message
that isinconsistent withitsowninformationbase,
sendsit back to whereit camefrom, say server S.
Note that it may not “ bounce” it using a Multi-
cast bounce, nor must it use the same sequence
number. It is atotally new message with alife of
itsown. Upon receptionof suchanerror message,
server S examinesthe message and the error that
was detected in it. It then prepares anew (set of)
message(s) that should solve the inconsistency,
sends these messagesto A, and then resends the
origina message. If, for example, server S hasa
user U on channel C, and server A also has users
onC. If U saysatext T on C, amessage goesto
A saying“ U said T on C". Now say that server
A doesnot know that user U ison C. It then sends
back “ User not at channel: U said TonC” . Sthen
comes to the conclusion that it is quite sure that
UisonC, soitsendsto A thefollowing message:
“UjoinsC", andright afterit,“UsadTonC".
A will then display amessagetoitsclientsthat U
joined C, and that U said T on C. Thetrick isto
design the messages such that every inconsisten-
¢y can beresolved. The proposed protocol inclu-
des messages for (hopefully) every possible

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.


http://www.verydoc.com
http://www.verydoc.com

inconsistency that can be detected by servers.
Note that due to the error-correcting properties,
it isnot necessary to exchangethe stateinforma-
tion between servers when the net is connected
again after a partition. Instead of flooding the
newly connected link with state information,
every inconsistency issteadily removed piece by
piece between individua servers. Although the
message-re ection scheme causes extramessages
to be sent, it still generates much less (bursty)
traffic than IRC, as the inconsistencies are stea
dily recovered.

7. Current problems

7.1 scaling problems

There still are somethingsthat don't scae very
well. The following have been identified so far:

- A server needs to maintain alist of links for
each server known in the net. Although it is not
alot of information (let’ ssay aserver allowsmax.
10 links to other servers, and it storesalink id in
1 byte, then it needs 10 bytes per server; in a
network of five thousand serversthis table takes
50kilobytes), it still scaleslinearly withthenum-
ber of serversinthe net. The protocol can handle
2,1 billion servers, server memory can't.

- A server dtill needs to know all channels
known throughout the net. Even worse, these
channels need to be sent to new servers that just
enter the net. The memory needed to store the
channels aso scales linearly to the number of
users, as thereis a* socia” limit to the number
of users per channel (30to 40). So twice asmuch
users will create twice as much channels, eating
twice as much memory.

7.2 more hierarchy needed

- The channelname-space is flat. As the net
grows, more channels are needed. However, an
increasingly number of people might want to be
inchannel swithacerta npopular name. It would
be a solution to allow severd of these channels
to be created with the same name, but in adiffe-
rent branche of the hierarchy tree; just like the
usenet-news naming hierarchy.

- Inorder to achieve better routing and limit the
number of servers aparticular server hasto have
routing i nformation for, it would be niceto alow
different levels of servers, for example hubs
whichonly route inter-server traffic between lar-

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

ge " subnets’ . Hubs would maintain similar rou-
ting information about other hubs, and use the
same mechanisms as the low-level servers do.

7.3 More distribution

Demanding that serverid's be obtained from a
central authority isn'tvery neat. It would be more
elegant if servers could decide amongst themsel -
veswho getswhat id. It would however cost alot
of messages, and make servers a bit too anony-
mous. If a serverid is more “ hardcoded”, it is
easier to trace server traffic and identify mali-
cious or buggy servers.

8. Conclusion
Some major problems of IRC have been identi-

fied. Elegant solutions have been found, using a
robust multicasting scheme. The remaining pro-
blems have aso been identified. The proposed
protocol ishowever only one of adozen attempts
toimproveIRC or replaceit by something better.
Some attempts focus on patching IRC’ s networ-
king problems, others try to design a more cen-
tralized protocol. Chatnet is a protocol that holds
ontothedistributed paradigm, providing arelia
ble worldwide conferencing sy stem. Perhapsthis
isthelong-waited for“ irdc-three” , thethirdissue
of the IRC daemon.

And why not try to design such a conferencing
protocol ? Well consider this: how can onetry to
design large multimedia conferencing systems
whenthereisn’t even ahighly scal able, worl dwi-
de text-based conferencing sy stem?

9. References
[RFC1459] J. Oikarinen, “ Internet Relay Chat

Protocol” , Internet Requestsfor Comments,
No. 1459, Network Information Center,
May 1993.

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.


http://www.verydoc.com
http://www.verydoc.com

