
1. What is a distributed
multi-channel conferencing
protocol anyways? 

A distributed system is a system that consists of
processing elements with communication chan-
nels between them. A distributed protocol descri-
bes  the way the processing elements
communicate via these channels. A conferencing
protocol is a set of rules that describes the mes-
sage exchange of a system that is built to let
people conference with eachother. A multichan-
nel conferencing protocol is a protocol for a
conferencing system in which people can talk in
channels (sometimes called groups). Conferen-
cing systems are mostly based on the client-serv-
er model. The conferencing system that is mostly
used on the Internet, Internet Relay Chat or IRC
for short, is also based on this model; its main
property is that the servers maintain all data ne-
cessary to run the system, and that clients connect
to them to request this data. Servers are perma-

nently coupled using communication links,
mostly TCP connections. A good way to model
a distributed system is the following: servers are
nodes in a graph. The edges are the communica-
tion links between them. If the graph is connec-
ted, then information between all nodes can be
exchanged. In some systems, servers use explicit
knowledge of the graph in order to route infor-
mation through the graph. For example, the graph
of the IRC protocol is a spanning tree. When
carefully chosen, a spanning tree can provide a
fast and efficient way to distribute information
through the graph.

2. Problems of existing
conferencing protocols

The forementioned IRC protocol is described in
RFC1459. Currently over 4000 users are on-line
at a time, using about 100 servers; conversations
are grouped into about 1500 channels. The pro-

      CHATNET - a Distributed Multi-
channel Conferencing Protocol

Gerrit Hiddink 
University of Twente

 January 1995

ABSTRACT
The aim of this paper is to give insight into the problems of the IRC protocol, and how they are solved by

the proposed protocol, called Chatnet. It also explains the structure of Chatnet, how it is divided into functional
parts and how these parts interact. Special attention is given to the Multicast layer, and what unsolved
problems still exist. Also the error-correcting properties of the protocol are explained. Finally some
concluding remarks are given.

About the author
The author is a Computer Science graduate student at the University of Twente in Enschede, Holland. His

fields of interest are multicast routing, distributed computing and internetworking. His graduation assignment
will have something to do with some of these three, applied to ATM networks. The work presented here,
however, was conducted in his spare time.

E-mail address: hiddinkg@pegasus.esprit.ec.org

This paper is to be presented at Gronics ’95, 24 february 1995, Groningen, The Netherlands.

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

http://www.verydoc.com
http://www.verydoc.com


tocol, however, does not scale to this amount of
users. Its main problems will be treated below.

2.1 Spanning tree
The IRC protocol uses a spanning tree to distri-

bute information. A spanning tree formally is a
graph of nodes (servers) and edges (communica-
tion links) that spans every server, and does not
contain cycles. This means there is only one way
to reach a certain destination. Messages cannot
be duplicated. As said before, a spanning tree can
be a very efficient way to distribute information.
There is however one major drawback: whenever
a communication link breaks, the tree is split in
two parts. Both will continue functioning nor-
mally, but their state information (user and chan-
nel tables etcetera) will become different. These
two versions then should be merged again when
the link is mended, which is not a trivial question.

The probability of a link breaking grows linear-
ly with the number of links. This means that the
larger such a system becomes, the more instable
it will be.

Finding the most efficient spanning tree needs
explicit knowledge of the underlying network
service, e.g. what network links are fastest. This
knowledge is often obtained by average ping
times. Then it is decided where the new server
must be linked in, and it remains there for the rest
of its lifespan. If the network characteristics
change however, parts of the tree should be re-
built to obtain the most efficient spanning tree.
The IRC protocol has no provisions to do this
automatically, so that maintaining the tree is a lot
of work in large systems, and it becomes increa-
singly more work as the network grows. In other
words: it does not scale very well.

The spanning tree also does not adapt to conge-
sted servers, as it is static. Heavily loaded servers
cause long ping times, so that pings time out and
the link to the congested server is disconnected,
thus splitting the tree. When both parts are joined
again, they start exchanging their state informa-
tion. This can cause a very high load in a large
system, causing ping timeouts etcetera. The pos-
sibility that this process repeats over and over
again is quite high. The heavy task of maintaining
the IRC network has been the cause of fights
between the IRC operators in the past. This has
in a few cases led to a division in which a group
of operators created their own IRC network. Cur-
rently two relatively large IRC networks are in

operation (4000 and 500 users, respectively cal-
led EFnet and Undernet), as well as several small
ones. These unfortunate events have caused IRC
to be viewed as a “ young people’s toy”  not
suitable for professional conferencing, as some
fights were guided by link breaks caused by IRC
operators themselves. It is hoped that the propo-
sed protocol will become a tool as useful as any
other common Internet resource.

2.2 State information
The above mentioned problems would not be as

sincere if the state information kept by every
server would be minimal. Every server, however,
keeps information about every user, every chan-
nel, every server, and what user is on what chan-
nels with what user modes. It is clear that the
amount of state information scales linearly with
the number of users: twice as much users need
twice as much server memory to store the state
information. The inter- server traffic between any
two servers also scales linearly, as every change
in the characterstics of any user is distributed to
all servers (eg. a change in nickname, usermode,
or a change in the channels the user is on). Due
to this bad scaling, the protocol will cause physi-
cal limits to be reached when scaled infinitely.
For example, a communication link may be una-
ble to carry the amount of traffic needed to update
the global state information. 

3. Solving these problems

3.1 link breaks
If we want to avoid the effect of increasing

probability that a link breaks, we must supply
redundant links. This causes cycles (from graph
theory we can learn that a tree becomes cyclic if
any random edge is added). so that routing is not
trivial anymore. Fortunately an elegant solution
does exist (see next section). The proposed solu-
tion also automatically avoids routes through
congested servers and links. The routing infor-
mation is updated dynamically without human
intervention.

3.2 state information
To minimize memory usage of a server and link

bandwidth, we must only send what is really
needed. If, for example, a server does not have
any users on a certain channel, it does not have

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

http://www.verydoc.com
http://www.verydoc.com


to know what the channel characteristics are, or
what users are on the channel. Only when a user
requests this information from the server, the
server must try to obtain this information. So we
must create some sort of channel-membership for
servers. They must subscribe to a channel first,
after which they receive all data necessary to
maintain the channel data locally. Servers also do
not need to know all users. They only know the
users that are participating in the channels that
the server is a member of. This also means that a
server cannot verify if a nick is already in use.
This is not a problem as long as the two users do
not join the same channel. But then they can be
identified using the serverid they’re using; this
serverid can be appended to their nicks. But any
other arbitrary identification method can be used,
such as unique digits or symbols. This also solves
the problem IRC has with its nickname space:
nicks are 9 characters only, and no identical nicks
are allowed.

3.3 rejoining the net
If the network of conference servers should split

and rejoin, no special action needs to be taken.
When two servers encounter conflicting data,
they start a short “ discussion” as to what version
of the data should be used. This means  that all
inconsistencies are slowly removed, so that no
“ net burst” is generated. This improves band-
width efficiency and prevents link overloading.
See also section 6 on Error Correction.

4. Structure of Chatnet

4.1 Network Objects
First, let us introduce the network objects:
Servers are identified using a unique 32-bit

serverid. This id is given to them by a central
authority. A server is either the entire protocol
stack, or only the third layer. 

Clients are identified by a 16-bit userid that is
unique within the scope of the server. So the tuple
(serverid, userid) uniquely identifies a user on the
entire net. 

Channels are identified using a case insensitive
character string of at most 32 characters.

A client is a program that has connected to a
server and identified itself as a client.

Terms that will be used to describe the protocol
are the following: 

SAP, or Service Access Point: an abstract point
at which interaction between a service provider
and a service user takes place. 

Service Primitive: a Service Primitive descri-
bes the interaction that may take place. It can
have parameters, for example ConnReq (ad-
dress). This Service Primitive can indicate, for
example, that the service user requests the service
provider that a connection be made to “ address”.

Service User: an abstract entity that can use a
service offered at a SAP. 

Service Provider: an abstract entity that can
offer a service at a SAP. 

Protocol Entity: an abstract entity that imple-
ments a protocol. It usually offers some service
at the “ top” when modelled graphically (see
fig.1), and makes use of some service at the
bottom. 

Protocol Information: the information kept by
a protocol entity. 

Peer entitity: a protocol entity with the same
functionality, but residing in a different compu-
ting environment (another computer system, or
merely another process on the same system).

A graphical representation of the Chatnet pro-
tocol structure is given in fig. 2. The three layers
will be treated below.

4.2 The first layer: Network Interface
Layer

The protocol is designed such that it is not
dependent of the underlying network service.
Any reliable, connection oriented network can be
used to transport data between protocol entities.
In order to provide a uniform interface, a Net-
work Interface Layer is used. This layer offers the
following functionality to the service user: 

- establishing a connection 

Fig. 1: graphical representation of a protocol entity

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

http://www.verydoc.com
http://www.verydoc.com


- identifying and authenticating servers and
clients

- service negotiation (very rudimentary) 
- buffering and transfer of data 
- connection termination.
The Network Interface Layer must provide a

unique connection identifier for each existing
connection, in other terms: a Service Access
Point for each connection. This can then be used
by the service user to identify a certain connec-
tion; the service user is not bothered by network
addresses, transport protocols etcetera. It only
notifies the service user of incoming connections
after they have been authorized. An incoming
connection identifies its “ type”  (client or server),
its username or serverid, its protocol version,
software version and a password. This password
is checked against a database. If it is wrong, the
connection is terminated; otherwise, the approp-
riate service user is notified of the new connec-
tion (for each type, a different service user may
be informed). If the server cannot handle more
connections or is not willing to, it may send a
FULL message and terminate the connection.
The NIL layer furthermore handles aliveness of
communication links using PING messages (to
which the other end must respond within limited
time using a PONG message). Connections be-
tween servers are also called “ links” . The other
protocol information that the NIL layer must
maintain is the following: for each existing con-
nection, it must store the connection id that this
connection has been given. It must furthermore
store characteristics like network address of the
other end, the software running there, the proto-
col version that must be used to communicate
with the other end, etcetera. In order to identify
the other end, it must also store the serverid if it
is a server, or a unique userid created by the NIL
layer if it is a client.

The service primitives that are provided are the
following:
nil_server_dataind (connid, data) 

nil_server_discind (connid, serverid) 

nil_server_connind (connid) 

nil_client_connind (connid) 

nil_client_dataind (connid, data) 

nil_client_discind (connid)

The names quite explain what the service pri-
mitives do. These primitives are the only way for
a service user to interact with the NIL layer. Since

the points of interaction are limited, the influen-
ces of the service user are clear. 

4.3 The second layer: Multicast Layer
Above the NIL layer is the Multicast layer and

the Client layer. Thus the Multicast Layer is a
service user of the NIL layer. It is only used by
servers; clients talk directly to the NIL layer. The
multicast layer provides the following functiona-
lity:

- transmission of messages to a list of destina-
tion serverid’s 

- broadcasting of messages to all servers that
can be reached 

- routing of messages to get them to their desti-
nation(s) 

- resequencing of messages 
- maintaining routing information 
- building spanning trees with different roots

(future extension) 
- gathering global characteristics from all nodes

in  the entire graph (future extension)
The algorithms to build the routing information

are explained in the next section. 
The Multicast layer uses datagrams. A da-

tagram is a message that, amongst others, con-
tains a source identifier, a destination identifier
and the message body. The destination identifier
can be a single destination, or a list of destina-
tions.

4.3.1 The routing information
This consists of the following: for each server,

a list of links is maintained, in the order of res-
ponse times. Since servers are identified using a
unique serverid, this id may be used as an index
to an array of a list of link id’s (as a link is a
connection between two servers, the link id is just
the connection id). Furthermore, the Multicast

Fig. 2: the structure of the Chatnet protocol stack

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

http://www.verydoc.com
http://www.verydoc.com


layer must maintain a list of all links it has to other
servers. It must know for each link at what rate it
may send data on that link. If, for example, a
particular server is allowed to connect via a serial
link, then the NIL layer must know in what rate
it may send data via this link. Or, suppose that the
server is only allowed to use a limited bandwidth
on a particular network, it may be specified that
only 10kbit/s may be used. This information will
typically be provided in a configuration file.

The layer also maintains a list of recently seen
broadcasts. This list may be cleaned at regular
intervals, removing old broadcasts. The interval
depends on the maximum delay in the network;
care must be taken that no broadcast is removed
from the list while one or more copies of it could
be underway.

4.3.2 Message routing
The way messages are routed using this infor-

mation is as follows: 
Multicast messages: The protocol entity sorts

the serverid’s in the destination list on the link
they can be reached fastest. If the datarate is
exceeded, it must use the second-fastest link,
etcetera. If the datarate of all links is exceeded, it
must send the remaining data on the supposedly
fastest link. The server administrator is prefe-
redly notified of this event, as it is an indication
that the server hasn’t got enough resources to
fulfill its task. After the list has been sorted into
smaller lists, the message is sent over all links
that have a non-empty destination list. Say, for
example, that server 1 wishes to send a message
to servers 2, 4 and 15 (see fig. 3). Suppose that
server 4 and 15 can be reached fastest via link 5,
and that server 2 can be reached via link 3. The
Multicast layer then creates a destination list
consisting of servers 4 and 15, and sends this
destination list along with the message to link 5.
It also creates a destination list with only server
2 and sends it to link 3. Note that it may very well
be that it is not server 2 itself that is directly
connected via link 3; the message will be passed
on from server to server until it reaches its desti-
nation. If a server receives a multicast message
on a link, it treats it as if it sent it itself (sorting,
copying and dispatching the message). There is
one but: the Multicast layer must check that no
information is sent back over the link the message
arrived on; this way, some protection is offered
against cycling messages. 

Unicast messages Unicast messages are mes-
sages destined for one server. As may be deduced
from the explanation above, a unicast message is
merely a multicast message with a destination list
consisting of only one server. It may thus be
treated as a multicast message. 

Broadcast messages: Broadcast messages are
simply sent across every link that the Multicast
layer has to other servers. This may seem very
expensive, but broadcasting (“ flooding” ) is part
of the routing mechanism as will be explained in
the next section. If a server receives a broadcast
from say server S, it examines the sequence num-
ber N attached to it. If it has already received a
broadcast from S with number N, it updates its
routing information. If it has not yet seen this
broadcast, it sends it over every link it has to other
servers, except the link it arrived on.

Bounced messages: When a particular server
A does not have a link to a server D, it must
“bounce” the message. This means that it is
marked as undeliverable, and sent over the link
towards the source server S of the message, say
to server B. When server B receives the bounced
message on link x, it removes link x from the list
of links for server D. Doing so, it remembers the
fact that server D could not be reached via link x.

Fig. 3: Chatnet multicast routing at work

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

http://www.verydoc.com
http://www.verydoc.com


Server B then looks for another link to send the
message on towards server D. If it finds one, it
sends the message across this link, removing the
“ undeliverable” mark. If it does not have a link
to server D, it bounces the message further back
towards its source S. So the message wanders
through the network, updating routing informa-
tion on the way, until either: 

- it reaches its destination D; 
- it reaches its source S; S now knows that server

D cannot be reached. In this case the graph must
be unconnected. It notifies the service user of  the
fact that server D is unreachable. 

- some server doesn’t have a link either to the
destination D or the source  S. The message is
then said to be “ trapped”  in a network partition
where  nor its source, nor its destination is in. The
message may then be  discarded. (Note that this
is the only case in which a message may be
discarded by a server; messages can further be
lost when a server crashes  while the message is
in its buffer).

4.3.3 Service primitives
The following service primitives are offered: 
mcast_dataind (serverid, data) 

mcast_unreachable (serverid) 

mcast_datareq (destlist, data) 

mcast_connreq (serverid) 

mcast_broadcast (data)

Again, the names will speak for themselves.

4.3.4 message resequencing
As messages from a certain source may travel

via different routes, they may become reordered
by the network. The Multicast layer must there-
fore restore the order of all messages that arrive.
It may do this by maintaining a buffer of a certain
length for each server it is currently receiving
data from, to store messages in-order. As “holes”
are filled, it may send the messages to the service
user. There must also be a timeout mechanism on
every waiting hole, because messages can (in rare
cases) get lost. In this case, the Multicast layer
must forget about the message and send what it’s
got to the service user. State information will
repair itself (see section 6), but the loss of confe-
rence data will not be noticed. Due to the severity
of this failure, the server administrator must be
informed about this event.

4.3.5 future extensions
Two mechanisms have already been defined but

not yet incorporated into the protocol: finding a

spanning tree (the algorithm finds a spanning tree
using l+t messages, where l is the number of links
in the graph, and t the number of links in the tree).
This algorithm will be used to support report
channels. These are channels with only a few
senders and a very large group of receivers (na-
med after #report on IRC at the time of the gulf
war). The second is an algorithm that collects
linear information. Linear information is infor-
mation that has a sum operator defined on it, so
that a piece of information can be added to a “ sub
total” at each server. This algorithm could be
used to determine the total numbers of users
on-line throughout the net, or a numeric repre-
sentation of the total graph of the net. The algo-
rithm takes l+t messages to return the “sum” to
the server that initiated the algorithm.

4.4 The third layer: Chatnet Server Layer
This layer maintains the actual conference in-

formation base. It interacts with the Multicast
layer in order to route inter-server traffic, and
with the NIL layer to send data to clients. The
Chatnet Server may actually be seen as consisting
of a client-part and a server-part. Both parts share
a large information base however. For this re-
ason, we will keep viewing it as a single layer.
The information that must be managed is the
following: 

For each user known to the server, a record must
be maintained. In it is the current nickname, the
user’s real name, the user’s network address, the
server it is coming from, the userid, and the
channels the user is on as far as this is known to
the server. A list of all channels must be maintai-
ned. Creation and starvation of channels are
broadcast through the net, so that the list of
channels can be kept uptodate. Note that the name
of the channel is the only attribute that the server
knows.

For all channels the server is on, it must store a
list of users that are on the channel, the channel
characteristics (mode, topic etc) and all servers
that are subscribed to the channel.

The server must also maintain a list of its own
clients. The information is the same as the infor-
mation for “ foreign”  users, except that the list is
extended by a list of users the client is ignoring.

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

http://www.verydoc.com
http://www.verydoc.com


5. Chatnet routing
A Multicast layer obtains its routing informa-

tion as follows: upon reception of the first copy
of a broadcast with source S and sequence num-
ber N on a link x, it clears the list of links for this
server, and places x at the head of the list. It stores
the tuple (S, N) in a list so that it recognizes other
copies of the broadcast. If another copy arrives
at, say, link y, it adds y at the tail of the list. Thus
a list of links is created in descending order of
speed. As explained in the previous section, the
link at the head of the list is used to transmit data
on that is destined for server S, as this is the link
that is the first step in a route that has proven to
be fastest. Note that a Chatnet server does not
know the exact route the information follows; it
only knows the first hop. This scheme avoids
congestion, as broadcasts travelling through con-
gested areas will be delayed; they arrive much
later than broadcasts that travelled another route,
so that the congested area is avoided. It is not
known yet if “ oscillation”  will occur. Oscillation
is said to happen if all servers decide at the same
time that a certain route A is congested and
switch to route B, with the effect that now route
B will be congested and route A has no traffic
anymore. After some time the servers will dis-
cover this and switch again, etcetera.

The list of links for each server that is obtained
using broadcasts, can be modified on a number
of occasions: 

- reception of any multicast message. When a
message from server S is received on link x, the
Multicast layer checks if x is at the head of the
list for S. If not, it removes x from the list and
inserts it at the head. The Multicast layer will use
link x if it has data for S. Doing so, it adapts to
new routes that have been created one way or
another. If, for example, somewhere in the graph
two servers have established a much faster con-
nection than other parts of the network, some
traffic may be rerouted as other servers discover
this faster path.

- reception of a bounced message. As mentio-
ned before, reception of a bounced message on
link x destined for server D causes x to be remo-
ved from the list of server D. 

- link breaks. When a network connection
breaks for some reason, the NIL layer will send
a DiscInd(Cid) to the Multicast layer. The Mul-
ticast layer must then search through the list of

ALL servers, removing link Cid from the servers’
list. 

- link creation. Servers may create links arbitra-
rely. If server A creates a link x with server B,
both put x at the head of the list for the other
server. Note that x may have different values at
both ends, as the domain in which links are
numbered, is limited to the memory of each serv-
er. The existence of this link is slowly propagated
through the graph; let’s say server C has a link y
with B, and sends its traffic to A via another link,
z. It then notices that traffic for server A is
suddenly coming from link y, as server B has a
direct link to A. According to the rules explained
above, server C puts link y at the head of the list
for server A, so that it will now use the more
direct route to A.

6. Error correction
The protocol has a number of provisions to

correct errors. Errors can be divided into two
classes: routing errors and conference informa-
tion inconsistencies. As explained in section 4
and 5, routing errors are resolved using the con-
cept of “bounced messages” . The mechanism to
correct conference information errors works
about the same: a server A noticing a message
that is inconsistent with its own informationbase,
sends it back to where it came from, say server S.
Note that it may not “bounce” it using a Multi-
cast bounce, nor must it use the same sequence
number. It is a totally new message with a life of
its own. Upon reception of such an error message,
server S examines the message and the error that
was detected in it. It then prepares a new (set of)
message(s) that should solve the inconsistency,
sends these messages to A, and then resends the
original message. If, for example, server S has a
user U on channel C, and server A also has users
on C. If U says a text T on C, a message goes to
A saying “ U said T on C” . Now say that server
A does not know that user U is on C. It then sends
back “User not at channel: U said T on C” . S then
comes to the conclusion that it is quite sure that
U is on C, so it sends to A the following message:
“U joins C” , and right after it, “U said T on C”.
A will then display a message to its clients that U
joined C, and that U said T on C. The trick is to
design the messages such that every inconsisten-
cy can be resolved. The proposed protocol inclu-
des messages for (hopefully) every possible

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

http://www.verydoc.com
http://www.verydoc.com


inconsistency that can be detected by servers.
Note that due to the error-correcting properties,
it is not necessary to exchange the state informa-
tion between servers when the net is connected
again after a partition. Instead of flooding the
newly connected link with state information,
every inconsistency is steadily removed piece by
piece between individual servers. Although the
message-rejection scheme causes extra messages
to be sent, it still generates much less (bursty)
traffic than IRC, as the inconsistencies are stea-
dily recovered.

7. Current problems

7.1 scaling problems
There still are some things that don’t scale very

well. The following have been identified so far: 
- A server needs to maintain a list of links for

each server known in the net. Although it is not
a lot of information (let’s say a server allows max.
10 links to other servers, and it stores a link id in
1 byte, then it needs 10 bytes per server; in a
network of five thousand servers this table takes
50 kilobytes), it still scales linearly with the num-
ber of servers in the net. The protocol can handle
2,1 billion servers, server memory can’t. 

- A server still needs to know all channels
known throughout the net. Even worse, these
channels need to be sent to new servers that just
enter the net. The memory needed to store the
channels also scales linearly to the number of
users, as there is a “social” limit to the number
of users per channel (30 to 40). So twice as much
users will create twice as much channels, eating
twice as much memory.

7.2 more hierarchy needed
- The channelname-space is flat. As the net

grows, more channels are needed. However, an
increasingly number of people might want to be
in channels with a certain popular name. It would
be a solution to allow several of these channels
to be created with the same name, but in a diffe-
rent branche of the hierarchy tree; just like the
usenet-news naming hierarchy. 

- In order to achieve better routing and limit the
number of servers a particular server has to have
routing information for, it would be nice to allow
different levels of servers, for example hubs
which only route inter-server traffic between lar-

ge “subnets”. Hubs would maintain similar rou-
ting information about other hubs, and use the
same mechanisms as the low-level servers do.

7.3 More distribution
Demanding that serverid’s be obtained from a

central authority isn’t very neat. It would be more
elegant if servers could decide amongst themsel-
ves who gets what id. It would however cost a lot
of messages, and make servers a bit too anony-
mous. If a serverid is more “hardcoded”, it is
easier to trace server traffic and identify mali-
cious or buggy servers.

8. Conclusion
Some major problems of IRC have been identi-

fied. Elegant solutions have been found, using a
robust multicasting scheme. The remaining pro-
blems have also been identified. The proposed
protocol is however only one of a dozen attempts
to improve IRC or replace it by something better.
Some attempts focus on patching IRC’s networ-
king problems, others try to design a more cen-
tralized protocol. Chatnet is a protocol that holds
on to the distributed paradigm, providing a relia-
ble worldwide conferencing system. Perhaps this
is the long-waited for “ irdc-three” , the third issue
of the IRC daemon. 

And why not try to design such a conferencing
protocol? Well consider this: how can one try to
design large multimedia conferencing systems
when there isn’t even a highly scalable, worldwi-
de text-based conferencing system? 

9. References
[RFC1459] J. Oikarinen, “Internet Relay Chat

Protocol”, Internet Requests for Comments,
No. 1459, Network Information Center,
May 1993.

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

Please purchase VeryDOC PS to PDF Converter on http://www.verydoc.com to remove this watermark.

http://www.verydoc.com
http://www.verydoc.com

